如图,平面直角坐标系中,直线l分别交x轴、y轴于A、B两点(OA<OB)且OA、OB的长分别是一元二次方程的两个根,点C在x轴负半轴上,
且AB:AC=1:2
(1)求A、C两点的坐标;
(2)若点M从C点出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围;
(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以 A、B、P、Q为顶点的四边形是菱形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.
解:(1)解得(x﹣)(x﹣1)=0,
解得x1=,x2=1。
∵OA<OB,∴OA=1,OB=。∴A(1,0),B(0,)。∴AB=2。
又∵AB:AC=1:2,∴AC=4。∴C(﹣3,0)。;
(2)由题意得:CM=t,CB=2.
①当点M在CB边上时,S=2﹣t(0≤t<);
②当点M在CB边的延长线上时,S=t﹣(t>)。
(3)存在,Q1(﹣1,0),Q2(1,﹣2),Q3(1,2),Q1(1,)。
【解析】
试题分析:(1)通过解一元二次方程,求得方程的两个根,从而得到A、B两点的坐标,再根据勾股定理可求AB的长,根据AB:AC=1:2,可求AC的长,从而得到C点的坐标。
(2)分①当点M在CB边上时;②当点M在CB边的延长线上时;两种情况讨论可求S关于t的函数关系式。
(3)分AB是边和对角线两种情况讨论可求Q点的坐标:
科目:初中数学 来源: 题型:
3 |
查看答案和解析>>
科目:初中数学 来源: 题型:
a+2 |
S△CAD |
S△DGH |
AD |
GH |
FC+2AE |
3AM |
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com