精英家教网 > 初中数学 > 题目详情
(2010•泰州)如图,抛物线y=-x2+c与x轴交于点A、B,且经过点D(-
(1)求c;
(2)若点C为抛物线上一点,且直线AC把四边形ABCD分成面积相等的两部分,试说明AC平分BD,且求出直线AC的解析式;
(3)x轴上方的抛物线y=-x2+c上是否存在两点P、Q,满足Rt△AQP全等于Rt△ABP?若存在,求出P、Q两点;若不存在,请说明理由.

【答案】分析:(1)将D点坐标代入抛物线的解析式中,即可求出待定系数c的值;
(2)若△ACD与△ABC的面积相等,则两个三角形中,AC边上的高相等,设AC、BD的交点为E,若以CE为底,AC边上的高为高,可证得△CED和△CEB的面积相等;这两个三角形中,若以DE、BE为底,则两个三角形同高,那么DE=BE,由此可证得AC平分BD;
由于E是BD的中点,根据B、D的坐标,即可求出E点的坐标,根据A、E的坐标即可用待定系数法求出直线AC的解析式;
(3)由于△ABP是直角三角形,且P点在x轴上方的抛物线上,那么P必为直角顶点,即∠APB=90°,若Rt△AQP全等于Rt△ABP,且Q点在x轴上方的抛物线上,那么∠APQ也必为直角,由此可得B、P、Q三点共线,而一条直线与抛物线的交点最多有两个,显然这种情况不成立,所以不存在符合条件的P、Q点.
解答:解:(1)因为抛物线经过D(-),则有:
-×3+c=,解得c=6;

(2)设AC与BD的交点为E,过D作DM⊥AC于M,过B作BN⊥AC于N;
∵S△ADC=S△ACB
AC•DM=AC•BN,即DM=BN;
CE•DM=CE•BN,
即S△CED=S△BEC(1);
设△BCD中,BD边上的高为h,由(1)得:
DE•h=BE•h,即BE=DE,故AC平分BD;
易知:A(-2,0),B(2,0),D(-),
由于E是BD的中点,则E();
设直线AC的解析式为y=kx+b,则有:

解得
∴直线AC的解析式为y=x+

(3)由于P、Q都在x轴上方的抛物线上,若△APB是直角三角形,则∠APB=90°;
若Rt△AQP全等于Rt△ABP,则AB=AQ,∠APQ=∠APB,即B、P、Q三点共线;
显然一条直线不可能与一个抛物线有3个交点,
故不存在符合条件的P、Q点.
点评:此题主要考查了一次函数与二次函数解析式的确定、三角形面积的求法、以及全等三角形和直角三角形的判定和性质.
练习册系列答案
相关习题

科目:初中数学 来源:2010年全国中考数学试题汇编《一次函数》(06)(解析版) 题型:解答题

(2010•泰州)如图,⊙O是O为圆心,半径为的圆,直线y=kx+b交坐标轴于A、B两点.
(1)若OA=OB
①求k;
②若b=4,点P为直线AB上一点,过P点作⊙O的两条切线,切点分别为C、D,若∠CPD=90°,求点P的坐标;
(2)若,且直线y=kx+b分⊙O的圆周为1:2两部分,求b.

查看答案和解析>>

科目:初中数学 来源:2010年江苏省泰州市中考数学试卷(解析版) 题型:解答题

(2010•泰州)如图,⊙O是O为圆心,半径为的圆,直线y=kx+b交坐标轴于A、B两点.
(1)若OA=OB
①求k;
②若b=4,点P为直线AB上一点,过P点作⊙O的两条切线,切点分别为C、D,若∠CPD=90°,求点P的坐标;
(2)若,且直线y=kx+b分⊙O的圆周为1:2两部分,求b.

查看答案和解析>>

科目:初中数学 来源:2010年江苏省泰州市中考数学试卷(解析版) 题型:解答题

(2010•泰州)如图,抛物线y=-x2+c与x轴交于点A、B,且经过点D(-
(1)求c;
(2)若点C为抛物线上一点,且直线AC把四边形ABCD分成面积相等的两部分,试说明AC平分BD,且求出直线AC的解析式;
(3)x轴上方的抛物线y=-x2+c上是否存在两点P、Q,满足Rt△AQP全等于Rt△ABP?若存在,求出P、Q两点;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2010年江苏省泰州市中考数学试卷(解析版) 题型:填空题

(2010•泰州)如图在8×6的网格图(每个小正方形的边长均为1个单位长度)中,⊙A的半径为2个单位长度,⊙B的半径为1个单位长度,要使运动的⊙B与静止的⊙A内切,应将⊙B由图示位置向左平移    个单位长度.

查看答案和解析>>

同步练习册答案