精英家教网 > 初中数学 > 题目详情

【题目】已知二次函数yx24x+3

1)求该二次函数与x轴的交点坐标和顶点;

2)在所给坐标系中画出该二次函数的大致图象,并写出当y0时,x的取值范围.

【答案】(1)二次函数与x轴的交点坐标为(1,0)(3,0),抛物线的顶点坐标为(2,﹣1);

(2)图见详解;当y<0时,1<x<3.

【解析】

(1)令y=0,可求出x的值,即为与x轴的交点坐标;将二次函数化为顶点式即可得出顶点坐标

(2)根据与x轴的交点坐标,顶点坐标,与y轴的交点即可画出图像,再根据图像信息即可得出x的取值范围.

(1)当y=0时,x2﹣4x+3=0,解得x1=1,x2=3,

所以该二次函数与x轴的交点坐标为(1,0)(3,0);

因为y=x2﹣4x+3=x2﹣4x+4﹣1=(x﹣2)2﹣1,

所以抛物线的顶点坐标为(2,﹣1);

(2)函数图象如图:

由图象可知,当y<0时,1<x<3.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某数学社团成员想利用所学的知识测量某广告牌的宽度图中线段MN的长,直线MN垂直于地面,垂足为点在地面A处测得点M的仰角为、点N的仰角为,在B处测得点M的仰角为米,且ABP三点在一直线上请根据以上数据求广告牌的宽MN的长.

参考数据:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数yax22ax3a≠0)的图象经过点A

1)求二次函数的对称轴;

2)当A(﹣10)时,

①求此时二次函数的表达式;

②把yax22ax3化为yaxh2+k的形式,并写出顶点坐标;

③画出函数的图象.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AC是⊙O的直径,B为⊙O上一点,D为的中点,过D作EF∥BC交AB的延长线于点E,交AC的延长线于点F.

(Ⅰ)求证:EF为⊙O的切线;

(Ⅱ)若AB=2,∠BDC=2∠A,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线yax2+bx+ca≠0)与x轴交于点A(﹣1,0),对称轴为x=1,与y轴的交点B(0,2)和(0,3)之间(包含这两个点)运动.有如下四个结论:抛物线与x轴的另一个交点是(3,0);②Cx1y1),Dx2y2)在抛物线上,且满足x1x2<1,则y1y2;③常数项c的取值范围是2≤c≤3;④系数a的取值范围是﹣1≤a≤﹣.上述结论中,所有正确结论的序号是(  )

A. ①②③ B. ②③④ C. ①④ D. ①③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,一次函数y1ax+b的图象与反比例函数y2的图象交于点A(12)B(2m)

(1)求一次函数和反比例函数的表达式;

(2)请直接写出y1≥y2x的取值范围;

(3)过点BBEx轴,ADBE于点D,点C是直线BE上一点,若∠DAC30°,求点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,A(0,3),B(1,0),连接BA,将线段BA绕点B顺时针旋转90°得到线段BC,反比例函数y的图象G经过点C

(1)请直接写出点C的坐标及k的值;

(2)若点P在图象G上,且∠POBBAO,求点P的坐标;

(3)在(2)的条件下,若Q(0,m)为y轴正半轴上一点,过点Qx轴的平行线与图象G交于点M,与直线OP交于点N,若点M在点N左侧,结合图象,直接写出m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O中,直径CD弦AB于E,AMBC于M,交CD于N,连接AD.

(1)求证:AD=AN;

(2)若AB=8,ON=1,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解下列方程

(1)4(x+1)2=25;

(2)x(2x+3)=4x+6;

(3)

(4)x2+=0.

查看答案和解析>>

同步练习册答案