精英家教网 > 初中数学 > 题目详情

【题目】如图,点A是反比例函数ym<0)位于第二象限的图像上的一个动点,过点AACx

轴于点CM为是线段AC的中点,过点MAC的垂线,与反比例函数的图像及y轴分别交于B

D两点.顺次连接ABCD.设点A的横坐标为n

(1)求点B的坐标(用含有mn的代数式表示);

(2)求证:四边形ABCD是菱形;

(3)若△ABM的面积为2,当四边形ABCD是正方形时,求直线AB的函数表达式.

【答案】(1) B(2n);(2)证明见解析;(3)yx6.

【解析】

试题(1)由题意可表示出点A的坐标,根据BD是AC的中垂线可得点B的纵坐标,代入反比例函数解析式即可求得横坐标;

(2)先根据AM=CM、BM=MD证明四边形ABCD是平行四边形,再根据BD⊥AC即可证明四边形ABCD是菱形;

(3)根据题意求得点A、B的坐标即可得.

试题解析:(1)当xn时,y,∴An),

由题意知BDAC的中垂线,∴点B的纵坐标为

∴把y代入yx=2n,∴B(2n);

(2)由(1)可知AMCMBMMD

∴四边形ABCD是平行四边形,

又∵BDAC,∴平行四边形ABCD是菱形;

(3)当四边形ABCD是正方形时,△ABM为等腰直角三角形,

∵△ABM的面积为2,∴AMBM2,∴A2,4),B4,2),

由此可得直线AB所对应的函数表达式为yx6.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,Rt△OAB的顶点A(﹣2,4)在抛物线y=ax2上,将Rt△OAB绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为( )

A.(
B.(2,2)
C.( ,2)
D.(2,

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知A(1,2),B(3,1),C(﹣2,﹣1).

(1)在图中作出△ABC关于y轴对称的△A1B1C1

(2)直接写出点A1,B1,C1的坐标.

A1 B1  , C1   ;

(3)请你求出△A1B1C1的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,AB是⊙O的直径,C为⊙O上一点,AD垂直于经过点C的直线DE,垂足为点D,AC平分∠DAB.

(1)求证:直线DE是⊙O的切线;
(2)连接BC,猜想:∠ECB与∠CAB的数量关系,并证明你的猜想.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】跃壮五金商店准备从宁云机械厂购进甲、乙两种零件进行销售.若每个甲种零件的进价比每个乙种零件的进价少2元,且用80元购进甲种零件的数量与用100元购进乙种零件的数量相同.

1求每个甲种零件、每个乙种零件的进价分别为多少元?

2)若该五金商店本次购进甲种零件的数量比购进乙种零件的数量的3倍还少5个,购进两种零件的总数量不超过95个,该五金商店每个甲种零件的销售价格为12元,每个乙种零件的销售价格为15元,则将本次购进的甲、乙两种零件全部售出后,可使销售两种零件的总利润(利润=售价-进价)超过371元,通过计算求出跃壮五金商店本次从宁云机械厂购进甲、乙两种零件有几种方案?请你设计出来.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,△ABC内接于⊙O,点D在OC的延长线上,sinB= ,∠CAD=30°.

(1)求证:AD是⊙O的切线;
(2)若OD⊥AB,BC=5,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC中,B=90°,AB=16cm,BC=12cm,P、Q是ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.

(1)出发2秒后,求PQ的长;

(2)当点Q在边BC上运动时,出发几秒钟后,PQB能形成等腰三角形?

(3)当点Q在边CA上运动时,求能使BCQ成为等腰三角形的运动时间.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P是抛物线y=x2﹣4x+3上的一点,以点P为圆心、1个单位长度为半径作⊙P,当⊙P与直线y=0相切时,点P的坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知非RtABC中,∠A=45°,高BDCE所在的直线交于点H,画出图形并求出∠BHC的度数.

查看答案和解析>>

同步练习册答案