精英家教网 > 初中数学 > 题目详情

作业宝如图,AB是圆O的直径,CD是圆O的弦,AB、CD的延长线交于点E,已知AB=2DE,∠E=16°,则∠ABC的度数是


  1. A.
    32°
  2. B.
    24°
  3. C.
    16°
  4. D.
    48°
B
分析:首先连接OD,由AB是圆O的直径,AB=2DE,即可得OD=DE,根据等边对等角的性质,可得∠EOD=∠E=16°,然后由圆周角定理,即可求得∠C的度数,然后又三角形外角的性质,即可求得∠ABC的度数.
解答:解:连接OD,
∵AB是圆O的直径,
∴AB=2OD,
∵AB=2DE,
∴OD=DE,
∴∠EOD=∠E=16°
∴∠C=∠BOD=8°,
∴∠ABC=∠C+∠E=8°+16°=24°.
故选B.
点评:本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在平面直角坐标系内,以y轴为对称轴的抛物线经过直y=-
3
3
x+2与y轴的交点A和点M(-
3
2
,0).
(1)求这条抛物线所对应的二次函数的关系式;
(2)将(1)中所求抛物线沿x轴向右平移.①在题目所给的图中画出沿x轴平移后经过原点的抛物线大致图象;②设沿x轴向右平移后经过原点的抛物线对称轴与直线AB相交于C点.判断以O为圆心,OC为半径的圆与直线AB的位置关系,并说明理由;
(3)P点是沿x轴向右平移后经过原点的抛物线对称轴上的点,求P点的坐标,使得以O,A,C,P四点为顶点的精英家教网四边形是平行四边形.

查看答案和解析>>

科目:初中数学 来源:第2章《二次函数》中考题集(35):2.7 最大面积是多少(解析版) 题型:解答题

如图,在平面直角坐标系内,以y轴为对称轴的抛物线经过直y=-x+2与y轴的交点A和点M(-,0).
(1)求这条抛物线所对应的二次函数的关系式;
(2)将(1)中所求抛物线沿x轴向右平移.①在题目所给的图中画出沿x轴平移后经过原点的抛物线大致图象;②设沿x轴向右平移后经过原点的抛物线对称轴与直线AB相交于C点.判断以O为圆心,OC为半径的圆与直线AB的位置关系,并说明理由;
(3)P点是沿x轴向右平移后经过原点的抛物线对称轴上的点,求P点的坐标,使得以O,A,C,P四点为顶点的四边形是平行四边形.

查看答案和解析>>

科目:初中数学 来源:第6章《二次函数》中考题集(38):6.4 二次函数的应用(解析版) 题型:解答题

如图,在平面直角坐标系内,以y轴为对称轴的抛物线经过直y=-x+2与y轴的交点A和点M(-,0).
(1)求这条抛物线所对应的二次函数的关系式;
(2)将(1)中所求抛物线沿x轴向右平移.①在题目所给的图中画出沿x轴平移后经过原点的抛物线大致图象;②设沿x轴向右平移后经过原点的抛物线对称轴与直线AB相交于C点.判断以O为圆心,OC为半径的圆与直线AB的位置关系,并说明理由;
(3)P点是沿x轴向右平移后经过原点的抛物线对称轴上的点,求P点的坐标,使得以O,A,C,P四点为顶点的四边形是平行四边形.

查看答案和解析>>

科目:初中数学 来源:第27章《二次函数》中考题集(37):27.3 实践与探索(解析版) 题型:解答题

如图,在平面直角坐标系内,以y轴为对称轴的抛物线经过直y=-x+2与y轴的交点A和点M(-,0).
(1)求这条抛物线所对应的二次函数的关系式;
(2)将(1)中所求抛物线沿x轴向右平移.①在题目所给的图中画出沿x轴平移后经过原点的抛物线大致图象;②设沿x轴向右平移后经过原点的抛物线对称轴与直线AB相交于C点.判断以O为圆心,OC为半径的圆与直线AB的位置关系,并说明理由;
(3)P点是沿x轴向右平移后经过原点的抛物线对称轴上的点,求P点的坐标,使得以O,A,C,P四点为顶点的四边形是平行四边形.

查看答案和解析>>

科目:初中数学 来源:2008年四川省眉山市中考数学试卷(解析版) 题型:解答题

(2008•眉山)如图,在平面直角坐标系内,以y轴为对称轴的抛物线经过直y=-x+2与y轴的交点A和点M(-,0).
(1)求这条抛物线所对应的二次函数的关系式;
(2)将(1)中所求抛物线沿x轴向右平移.①在题目所给的图中画出沿x轴平移后经过原点的抛物线大致图象;②设沿x轴向右平移后经过原点的抛物线对称轴与直线AB相交于C点.判断以O为圆心,OC为半径的圆与直线AB的位置关系,并说明理由;
(3)P点是沿x轴向右平移后经过原点的抛物线对称轴上的点,求P点的坐标,使得以O,A,C,P四点为顶点的四边形是平行四边形.

查看答案和解析>>

同步练习册答案