精英家教网 > 初中数学 > 题目详情
如图,抛物线的对称轴是直线,且经过点(3,0),则的值为(      )
A.0B.-1C. 1D. 2
0

试题分析:因为对称轴为,抛物线与x轴的交点其中一个为,则另一个交点为,所以,所以所以
点评:题目难度不大,考查的是学生对于抛物线的认识,抛物线的y值为0时,此时抛物线代表的是与x轴的交点所表示的方程,由此可以用两根关系来表示,且两个根关于对称轴对称
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,直线y=﹣2x+42交x轴于点A,交直线y=x于点B,抛物线y=ax2﹣2x+c分别交线段AB、OB于点C、D,点C和点D的横坐标分别为16和4,点P在这条抛物线上.

(1)求点C、D的纵坐标.
(2)求a、c的值.
(3)若Q为线段OB上一点,P、Q两点的纵坐标都为5,求线段PQ的长.
(4)若Q为线段OB或线段AB上一点,PQ⊥x轴,设P、Q两点间的距离为d(d>0),点Q的横坐标为m,直接写出d随m的增大而减小时m的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知,如图,A,B分别在x轴和y轴上,且OA=2OB,直线y1=kx+b经过A点与抛物线y2=-x2+2x+3交于B,C两点,
(1)试求k,b的值及C点坐标;
(2)x取何值时y1,y2均随x的增大而增大;
(3)x取何值时y1>y2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,二次函数的图象与y轴交于点C(0,4),与x轴交于点A、B,点A的坐标为(4,0).

(1)求该二次函数的关系式;
(2)写出该二次函数的对称轴和顶点坐标;
(3)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;
(4)若平行于x轴的动直线与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某商业公司为指导某种应季商品的生产和销售,对三月份至七月份该商品的销售和生产进行了调研,结果如下:一件商品的售价M(元)与时间t(月)的关系可用一条线段上的点来表示(如图1);一件商品的成本Q(元)与时间t(月)的关系可用一条抛物线上的点来表示,其中6月份成本最高(如图2).
(1)  一件商品在3月份出售时的利润是多少元?(利润=售价-成本)
(2)求图2中表示一件商品的成本Q(元)与时间t(月)之间的函数关系式;
(3)你能求出3月份至7月份一件商品的利润W(元)与时间t(月)之间的函数关系式吗?若该公司能在一个月内售出此种商品30 000件,请你计算一下该公司在一个月内最少获利多少元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

小明从如图所示的二次函数的图象中,观察得出了下面五条信息:

;②;③
;⑤
你认为其中正确的是( )
A.①②④B.①③⑤C.②③⑤D.①③④⑤

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

一条抛物线具有下列特征:(1)经过点A(0,3);(2)在x轴左侧的部分是上升的,在x轴右侧的部分是下降的,试写出一条满足这两条特征的抛物线的表达式:               

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

y=x2+(1-a)x+1是关于x的二次函数,当x的取值范围是1≤x≤3时,y在x=1时取得最大值,则实数a的取值范围是( )。
A.a=5B.a≥5C.a=3D.a≥3

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,梯形中,.动点从点出发,以每秒个单位长度的速度在线段上运动;动点同时从点出发,以每秒个单位长度的速度在线段上运动.以为边作等边△,与梯形在线段的同侧.设点运动时间为,当点到达点时,运动结束.

(1)当等边△的边恰好经过点时,求运动时间的值;
(2)在整个运动过程中,设等边△与梯形的重合部分面积为,请直接写
之间的函数关系式和相应的自变量的取值范围;
(3)如图,当点到达点时,将等边△绕点旋转(),
直线分别与直线、直线交于点.是否存在这样的,使△为等腰三角形?
若存在,请求出此时线段的长度;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案