精英家教网 > 初中数学 > 题目详情

如图,AD∥BC,EA,EB分别平分∠DAB,∠CBA,CD过点E,求证:AB=AD+BC.

解:过E作EF∥AD,交AB于F,
则∠DAE=∠AEF,∠EBC=∠BEF,
∵EA、EB分别平分∠DAB和∠CBA,
∴∠EAF=∠AEF,∠EBF=∠BEF,
∴AF=EF=FB,
又∵EF∥AD∥BC,
∴EF是梯形ABCD的中位线,
∴EF=
∴AF+FB=2EF,
∴AB=AD+BC.
分析:先过E作EF∥AD,交AB于F,则∠DAE=∠AEF,∠EBC=∠BEF,因为EA、EB分别平分∠DAB和∠CBA,所以AF=EF=FB,再根据梯形中位线定理得出AB=AD+BC.
点评:主要考查了全等三角形的判定与性质,用到的知识点是平行线的判定和梯形中位线定理,解题的关键是要灵活运用已知条件求出EF=
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

2、如图,AD∥BC,则下列式子成立的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

8、如图:AD∥BC,AB=AC,∠BAC=80°,则∠DAC=
50
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

4、如图,AD⊥BC,DE∥AB,则∠CDE与∠BAD的关系是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知如图,AD=BC,要得到△ABD≌△CDB,可以添加角的条件:∠
ADB
ADB
=∠
CBD
CBD

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,AD⊥BC,EF⊥BC,∠1=∠2.求证:AB∥GF.

查看答案和解析>>

同步练习册答案