A
分析:根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE,再根据直角三角形30°角所对的直角边等于斜边的一半求出AE=8cm,根据直角三角形两锐角互余求出∠DAE=60°,再根据角平分线的定义求出∠EAG=30°,然后求出∠EAG=∠AEG,根据等角对等边可得AG=EG,设DG=x,先表示出DE,再表示出AG=GE,然后在Rt△ADG中,利用勾股定理列式计算即可得解.
解答:∵DE是AB的垂直平分线,
∴AE=BE,故C选项错误;
∵∠AED=30°,AD=4cm,
∴AE=2AD=2×4=8cm,
∴BE=8cm,故B选项错误;
又∵∠DAE=90°-∠AED=90°-30°=60°,AG平分∠BAC,
∴∠EAG=
∠DAE=
×60°=30°,
∴∠EAG=∠AEG,
∴AG=EG,故D选项错误;
设DG=x,
在Rt△ADE中,DE=
=
=4
cm,
∴AG=GE=4
-x,
在Rt△ADG中,AD
2+DG
2=AG
2,
即4
2+x
2=(4
-x)
2,
解得x=
,
即DG=
cm,故A选项正确.
故选A.
点评:本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,直角三角形两锐角互余,直角三角形30°角所对的直角边等于斜边的一半,勾股定理的应用,综合题,但难度不大.