精英家教网 > 初中数学 > 题目详情
(2010•防城港)当实数k为何值时,关于x的方程x2-4x+3-k=0有两个相等的实数根?并求出这两个相等的实数根.
【答案】分析:若方程有两个相等的实数根,则方程的△=0,可据此求出k的值,进而可确定原一元二次方程,从而求出方程的根.
解答:解:∵方程有两个相等的实数根,
∴△=b2-4ac=16-4(3-k)=0,解得k=-1;
故原方程为:x2-4x+4=0,解得x1=x2=2.
点评:总结:一元二次方程根的情况与判别式△的关系:
(1)△>0?方程有两个不相等的实数根;
(2)△=0?方程有两个相等的实数根;
(3)△<0?方程没有实数根.
练习册系列答案
相关习题

科目:初中数学 来源:2010年全国中考数学试题汇编《二次函数》(09)(解析版) 题型:解答题

(2010•防城港)已知:抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于C点,且A(-1,0),点B在x轴的正半轴上,OC=3OA(O为坐标原点).
(1)求抛物线的解析式;
(2)若点E是抛物线上的一个动点且在x轴下方和抛物线对称轴的左侧,过E作EF∥x轴交抛物线于另一点F,作ED⊥x轴于点D,FG⊥x轴于点G,求四边形DEFG周长m的最大值;
(3)设抛物线顶点为P,当四边形DEFG周长m取得最大值时,以EF为边的平行四边形面积是△AEP面积的2倍,另两顶点钟有一顶点Q在抛物线上,求Q点的坐标.

查看答案和解析>>

科目:初中数学 来源:2010年广西玉林市中考数学试卷(解析版) 题型:解答题

(2010•防城港)已知:抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于C点,且A(-1,0),点B在x轴的正半轴上,OC=3OA(O为坐标原点).
(1)求抛物线的解析式;
(2)若点E是抛物线上的一个动点且在x轴下方和抛物线对称轴的左侧,过E作EF∥x轴交抛物线于另一点F,作ED⊥x轴于点D,FG⊥x轴于点G,求四边形DEFG周长m的最大值;
(3)设抛物线顶点为P,当四边形DEFG周长m取得最大值时,以EF为边的平行四边形面积是△AEP面积的2倍,另两顶点钟有一顶点Q在抛物线上,求Q点的坐标.

查看答案和解析>>

科目:初中数学 来源:2010年广西防城港市中考数学试卷(解析版) 题型:解答题

(2010•防城港)已知:抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于C点,且A(-1,0),点B在x轴的正半轴上,OC=3OA(O为坐标原点).
(1)求抛物线的解析式;
(2)若点E是抛物线上的一个动点且在x轴下方和抛物线对称轴的左侧,过E作EF∥x轴交抛物线于另一点F,作ED⊥x轴于点D,FG⊥x轴于点G,求四边形DEFG周长m的最大值;
(3)设抛物线顶点为P,当四边形DEFG周长m取得最大值时,以EF为边的平行四边形面积是△AEP面积的2倍,另两顶点钟有一顶点Q在抛物线上,求Q点的坐标.

查看答案和解析>>

科目:初中数学 来源:1999年全国中考数学试题汇编《图形的旋转》(01)(解析版) 题型:选择题

(2010•防城港)下列图形中既是轴对称图形,又是中心对称图形的是( )
A.等边三角形
B.平行四边形
C.菱形
D.等腰梯形

查看答案和解析>>

科目:初中数学 来源:2010年全国中考数学试题汇编《概率》(02)(解析版) 题型:选择题

(2010•防城港)掷一个骰子,向上一面的点数大于2且小于5的概率为p1,拋两枚硬币,正面均朝上的概率为p2,则( )
A.p1<p2
B.p1>p2
C.p1=p2
D.不能确定

查看答案和解析>>

同步练习册答案