精英家教网 > 初中数学 > 题目详情
4.若|1-x|=1+|x|,则$\sqrt{(x-1)^{2}}$=1-x.

分析 根据绝对值的性质求出x的范围,根据二次根式的性质化简即可.

解答 解:∵|1-x|=1+|x|,
∴x≤0,
∴$\sqrt{(x-1)^{2}}$=1-x,
故答案为:1-x.

点评 本题考查的是二次根式的化简,掌握二次根式的性质是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

14.某物流公司现有31吨货物运往某地,计划同时租用A型车a辆,B型车b辆,使每辆车都装满货物恰好一次运完.
已知每种型号车的载重量和租金如表:
车型AB
载重量(吨/辆)34
租金(元/辆)10001200
(1)请你帮该物流公司设计租车方案;
(2)请选出最省钱的租车方案,并求出最少租车费.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.如图,己知射线OM与射线ON互相垂直,A是直径PQ为2cm的半圆铁片上一点,且弧AQ的度数为60°,(即弧AQ所对的圆心角为60°)动点P从点O沿射线OM开始滑动,同时动点Q在ON上滑动,当点Q滑至点O停止时,点A所经过的路程是(  )
A.3B.3-$\sqrt{3}$C.3+$\sqrt{3}$D.6-2$\sqrt{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.计算:(-$\frac{3}{2}$)2÷(-$\frac{1}{2}$)2×(1$\frac{1}{3}$)2-(-4)2-42

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.如图1,在边长为4的正△ABC中,点P以每秒1cm的速度从点A出发,沿折线AB-BC运动,到点C停止.过点P作PD⊥AC,垂足为D,PD的长度y(cm)与点P的运动时间x(秒)的函数图象如图2所示.当点P运动5.5秒时,PD的长是(  )
A.$\frac{5\sqrt{3}}{4}$cmB.$\frac{5\sqrt{3}}{2}$cmC.2$\sqrt{3}$cmD.3$\sqrt{3}$cm

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,有一块四边形形状的铁皮ABCD,BC=CD=6,AB=2AD,∠ABC=∠ADB=90°,以C为圆心,CB为半径作弧BD得一扇形CBD,剪下扇形并用它围成一圆锥的侧面.
求:(1)∠BCD的度数;
(2)该圆锥的底面半径.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.【提出问题】已知如图1,P是∠ABC、∠ACB的角平分线的交点,你能找到∠P、∠A的关系吗?
【分析问题】在解决这个问题时,某小组同学是这样做的:
先赋予∠A几个特殊值:
当∠A=80°时,计算出∠P=130°;
当∠A=40°时,计算出∠P=110°;
当∠A=100°时,计算出∠P=140°;
…由以上特例猜想∠P与∠A的关系为:∠P=90°+$\frac{1}{2}$∠A.再证明这一结论:
证明:∵点P是∠ABC、∠ACB的角平分线的交点.
∴∠PBC=$\frac{1}{2}$∠ABC;∠PCB=$\frac{1}{2}$∠ACB
∴∠PBC+∠PCB=$\frac{1}{2}$(∠ABC+∠ACB)
又∵∠A+(∠ABC+∠ACB)=180°
∴∠ABC+∠ACB=180°-∠A
∴∠PBC+∠PCB=$\frac{1}{2}$(∠ABC+∠ACB)
=$\frac{1}{2}$(180°-∠A)
∴∠P=180°-(∠PBC+∠PCB)
=180°-$\frac{1}{2}$(180°-∠A)
=90°+$\frac{1}{2}$∠A
【解决问题】请运用以上解决问题的“思想方法”解决下面的几个问题:
(1)如图2,若点P时∠ABC、∠ACB的三等分线的交点,即∠PBC=$\frac{1}{3}$∠ABC,∠PCB=$\frac{1}{3}$∠ACB,猜测∠P与∠A的关系为∠P=$\frac{1}{3}$∠A+$\frac{2}{3}$×180°,证明你的结论.
(2)若点P时∠ABC、∠ACB的四等分线的交点,即∠PBC=$\frac{1}{4}$∠ABC,∠PCB=$\frac{1}{4}$∠ACB,则∠P与∠A的关系为∠P=$\frac{1}{4}$∠A+$\frac{3}{4}$×180°.(直接写出答案,不需要证明)
(3)若点P时∠ABC、∠ACB的n等分线的交点,即∠PBC=$\frac{1}{n}$∠ABC,∠PCB=$\frac{1}{n}$∠ACB,则∠P与∠A的关系为$\frac{n-1}{n}$•180°+$\frac{1}{n}$∠A.(直接写出答案,不需要证明)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.如图所示,直线AD和BC被直线AB所截,∠1和∠2是同位角;∠4、∠FAC与∠2也是同位角.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.画出函数y=2x+1的图象,利用图象求:
(1)求方程2x+1=0的解;
(2)求出不等式2x+1≥0的解集;
(3)当-3≤y≤3时,求x的取值范围;
(4)求图象与坐标轴围成的三角形面积.

查看答案和解析>>

同步练习册答案