精英家教网 > 初中数学 > 题目详情
已知:如图,在平面直角坐标系xOy中,直线与x轴、y轴分别交于点A、B,点C在线段AB上,且
(1)求点C的坐标(用含有m的代数式表示);
(2)将△AOC沿x轴翻折,当点C的对应点C′恰好落在抛物线上时,求该抛物线的表达式;
(3)设点M为(2)中所求抛物线上一点,当以A、O、C、M为顶点的四边形为平行四边形时,请直接写出所有满足条件的点M的坐标.
(1)(3,-2m);(2);(3)或(

试题分析:(1)令x=0,即可求得B的纵坐标,令x=0求得x,则A、B的坐标即可求得,根据.可以得到C是AB的中点,据此即可求得C的坐标.
(2)求得C关于x轴的对称点,代入抛物线的解析式,即可求得m的值,进而求得抛物线解析式.
(3)分AO是平行四边形的对角线,OC是平行四边形的对角线,AC是平行四边形的对角线三种情况进行讨论,根据平行四边形的对角线互相平分,即可求解.
(1)在直线中,令x=0,解得:y=-4m,则B的坐标是(0,-4m),
令y=0,解得:x=6,则A的坐标是(6,0).
.∴C是AB的中点.∴C的坐标是(3,-2m).
(2)∵将△AOC沿x轴翻折,点C的对应点为C′,∴C′的坐标是(3,2m),
代入抛物线的解析式得:,解得:.
∴抛物线的解析式是:.
(3)设M的坐标是(x,y),
又C的坐标是
当AO是对角线时,AO的中点是(3,0),则解得:.
则M的坐标是,满足函数的解析式.
当AC是平行四边形的对角线时,AC的中点是:,则M的坐标是是抛物线上的点.
当OC是平行四边形的对角线时,OC的中点是
,解得:.
则M的坐标是.点是抛物线上的点.
综上所述,M的坐标是:或(
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

一次函数的图象交轴于(2,0),交轴于(0,-4),当自变量的取值范围是时则函数值的取值范围是 (   )
A.B.
C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知直线与x轴、y轴分别交于B点、A点,直线与x轴、y轴分别交于D点、E点,两条直线交于点C,求⊿BCD的外接圆直径的长度。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,是一张放在平面直角坐标系中的矩形纸片,为原点,点轴的正半轴上,,在上取一点,将纸片沿翻折,使点落在边上的点处,求直线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在同一直角坐标系中反比例函数y=的图象与一次函数y=kx+b的图象相交,且其中一个交点A的坐标为(-2,3),若一次函数的图象又与x轴相交于点B,且△AOB的面积为6(点O为坐标原点).求一次函数与反比例函数的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,直线l:y=-x-与坐标轴交于A,C两点,过A,O,C三点作⊙O1,点E为劣弧AO上一点,连接EC,EA,EO,当点E在劣弧AO上运动时(不与A,O两点重合),的值是否发生变化?(  )
A.B.C.2D.变化

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下定义:
若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|;
若|x1﹣x2|<|y1﹣y2|,则点P1与点P2的“非常距离”为|y1﹣y2|.
例如:点P1(1,2),点P2(3,5),因为|1﹣3|<|2﹣5|,所以点P1与点P2的“非常距离”为|2﹣5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q交点).
(1)已知点A(﹣,0),B为y轴上的一个动点,
①若点A与点B的“非常距离”为2,写出一个满足条件的点B的坐标;
②直接写出点A与点B的“非常距离”的最小值;
(2)已知C是直线y=x+3上的一个动点,
①如图2,点D的坐标是(0,1),求点C与点D的“非常距离”的最小值及相应的点C的坐标;
②如图3,E是以原点O为圆心,1为半径的圆上的一个动点,求点C与点E的“非常距离”的最小值及相应的点E与点C的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

若点在函数的图象上,则(    )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,直线x=2与反比例函数y= 和y=?的图象分别交于A、B两点,若点P是y轴上任意一点,则△PAB的面积是(      ).

查看答案和解析>>

同步练习册答案