精英家教网 > 初中数学 > 题目详情
在同一直角坐标系中反比例函数y=的图象与一次函数y=kx+b的图象相交,且其中一个交点A的坐标为(-2,3),若一次函数的图象又与x轴相交于点B,且△AOB的面积为6(点O为坐标原点).求一次函数与反比例函数的解析式.
y=-x+2或y=x+6   y=-

解:将点A (-2,3)代入y=中得:3=
∴m=-6.∴反比例函数的解析式为y=-.
又∵△AOB的面积为6,∴|OB|·|yA|=6.
|OB|·3=6,∴|OB|=4.
∴B点坐标为(4,0)或(-4,0).
①当B(4,0)时,又∵点A(-2,3)是两函数图象的交点,
∴代入y=kx+b中得
解得.
∴y=-x+2.
②当B(-4,0)时,又∵点A(-2,3)是两函数图象的交点,
∴代入y=kx+b中得
解得
∴y=x+6.
综上所述,一次函数的解析式为y=-x+2或y=x+6.反比例函数的解析式为y=-
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知:如图,在平面直角坐标系xOy中,直线与x轴、y轴分别交于点A、B,点C在线段AB上,且
(1)求点C的坐标(用含有m的代数式表示);
(2)将△AOC沿x轴翻折,当点C的对应点C′恰好落在抛物线上时,求该抛物线的表达式;
(3)设点M为(2)中所求抛物线上一点,当以A、O、C、M为顶点的四边形为平行四边形时,请直接写出所有满足条件的点M的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,梯形ABCD中,AB∥CD,AB=14,AD= 4,CD=7.直线l经过A,D两点,且sin∠DAB=.动点P在线段AB上从点A出发以每秒2个单位的速度向点B运动,同时动点Q从点B出发以每秒5个单位的速度沿B→C→D的方向向点D运动,过点P作PM垂直于AB,与折线A→D→C相交于点M,当P,Q两点中有一点到达终点时,另一点也随之停止运动.设点P,Q运动的时间为t秒(t>0),△MPQ的面积为S.

(1)求腰BC的长;
(2)当Q在BC上运动时,求S与t的函数关系式;
(3)在(2)的条件下,是否存在某一时刻t,使得△MPQ的面积S是梯形ABCD面积的?若存在,请求出t的值;若不存在,请说明理由;
(4)随着P,Q两点的运动,当点M在线段DC上运动时,设PM的延长线与直线l相交于点N,试探究:当t为何值时,△QMN为等腰三角形?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

函数常用的表示方法有三种.
已知A、B两地相距30千米,小王以40千米/时的速度骑摩托车从A地出发匀速前往B地参加活动.请选择两种方法来表示小王与B地的距离y(千米)与行驶时间x(小时)之间的函数关系.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某蔬菜经销商到蔬菜种植基地采购一种蔬菜,经销商一次性采购蔬菜的采购单价y(元/千克)与采购量x(千克)之间的函数关系图象如图中折线AB——BC——CD所示(不包括端点A).

(1)当100<x<200时,直接写y与x之间的函数关系式.
(2)蔬菜的种植成本为2元/千克,某经销商一次性采购蔬菜的采购量不超过200千克,当采购量是多少时,蔬菜种植基地获利最大,最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知反比例函数y1 (k1>0)与一次函数y2=k2x+1(k2≠0)相交于A、B两点,AC⊥x轴于点C.若△OAC的面积为1,且tan∠AOC=2.

(1)求出反比例函数与一次函数的解析式;
(2)请直接写出B点的坐标,并指出当x为何值时,反比例函数y1的值大于一次函数y2的值?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售, 售出土豆千克数与他手中持有的钱(含备用零钱)的关系如图所示,结合图象回答下列问题:

(1) 农民自带的零钱是多少?
(2) 降价前他每千克土豆出售的价格是多少?
(3) 降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱) 是26元,问他一共带了多少千克土豆.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=bx+c和反比例函数y=在同一平面直角坐标系中的图象大致是(  ).

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知正比例函数的图象上两点,当时,有,那么的取值范围是(    )
A.B.C.D.

查看答案和解析>>

同步练习册答案