【题目】(1)如图1,将矩形ABCD折叠,使BC落在对角线BD上,折痕为BE,点C落在点C'处,若∠ADB=46°,则∠DBE的度数为______.
(2)小明手中有一张矩形纸片ABCD,AB=4,AD=9.
(画一画)
如图2,点E在这张矩形纸片的边AD上,将纸片折叠,使AB落在CE所在直线上,折痕设为MN(点M,N分别在边AD,BC上),利用直尺和圆规画出折痕MN(不写作法,保留作图痕迹,并用黑色水笔把线段描清楚);
(算一算)
如图3,点F在这张矩形纸片的边BC上,将纸片折叠,使FB落在射线FD上,折痕为GF,点A,B分别落在点A',B'处,若AG=,求B'D的长;
【答案】(1)23(2)【画一画】画图见解析;【算一算】DB`=3
【解析】
(1)根据矩形性质可得AD∥BC,从而可得∠ADB=∠DBC=46°,再根据翻折的性质即可求得∠DBE的度
(2)画一画:连接CE并延长交BA的延长线与点G,利用尺规作图画出∠BGC的角平分线即可得抓痕MN,
算一算:由已知可得GD=,根据矩形的性质及翻折的性质可得∠DFG=∠DGF,从而可得DF=DG=,在Rt△CDE中,根据勾股定理可求得CF= ,根据BF=BC-CF求得BF的长,再根据翻折的性质继而可求得DB`的长即可
(1)如图1中,
∵四边形ABCD是矩形,
∴AD//BC,
∴∠ADB=∠DBC=46°,
由翻折不变性可知,∠DBE=∠EBC= ∠DBC=23°,
故答案为23.
(2)【画一画】,如图2中,
【算一算】
如图3中,
∵AG=,AD=9,
∴GD=9=,
∵四边形ABCD是矩形,
∴AD//BC,
∴∠DGF=∠BFG,
由翻折不变性可知,∠BFG=∠DFG,
∴∠DFG=∠DGF,
∴DF=DG=,
∵CD=AB=4,∠C=90°,
∴在Rt△CDF中,CF=,
∴BF=BCCF= ,
由翻折不变性可知,FB=FB'=,
∴DB'=DFFB'==3.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,为坐标原点,点(0,1),点(1,0),正方形的两条对角线的交点为,延长至点,使.延长至点,使,以,为邻边做正方形.
(Ⅰ)如图①,求的长及的值;
(Ⅱ)如图②,正方形固定,将正方形绕点逆时针旋转,得正方形,记旋转角为(0°<<360°),连接.
①旋转过程中,当90°时,求的大小;
②在旋转过程中,求的长取最大值时,点的坐标及此时的大小(直接写出结果即可).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点O为坐标原点,直线y=﹣x+12与x轴,y轴分别相交于点A,B,∠ABO的平分线与x轴相交于点C.
(1)如图1,求点C的坐标;
(2)如图2,点D,E,F分别在线段BC,AB,OB上(点D,E,F都不与点B重合),连接DE,DF,EF,且∠EDF+∠OBC=90°,求证:∠FED=∠AED;
(3)如图3,在(2)的条件下,延长线段FE与x轴相交于点G,连接DG,若∠CGD=∠FGD,BF:BE=5:8,求直线DF的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两个商场出售相同的某种商品,每件售价均为3000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一件按原售价收费,其余每件优惠30%;乙商场的优惠条件是:每件优惠25%.设所买商品为x件时,甲商场收费为y1元,乙商场收费为y2元.
(1)分别求出y1,y2与x之间的关系式;
(2)当甲、乙两个商场的收费相同时,所买商品为多少件?
(3)当所买商品为5件时,应选择哪个商场更优惠?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】早晨,小刚沿着通往学校唯一的一条路(直路)上学,途中发现忘带饭盒,停下来往家里打电话,妈妈接到电话后带上饭盒马上赶往学校,同时小刚返回,两人相遇后,小刚立即赶往学校,妈妈回家,15分钟后妈妈到家,再经过3分钟小刚到达学校,小刚始终以100米/分的速度步行,小刚和妈妈的距离y(单位:米)与小刚打完电话后的步行时间t(单位:分)之间的函数关系如图,下列四种说法中错误的是( )
A. 打电话时,小刚和妈妈的距离为1250米
B. 打完电话后,经过23分钟小刚到达学校
C. 小刚和妈妈相遇后,妈妈回家的速度为150米/分
D. 小刚家与学校的距离为2550米
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】服装店老板用4500元购进一批某款T恤衫,由于深受顾客喜爱,很快售完,老板又用4950元购进第二批该款式T恤衫,所购数量与第一批相同,但每件进价比第一批多了9元.
(1)第一批该款式T恤衫每件进价是多少元?
(2)老板以每件120元的价格销售该款式T恤衫,当第二批T恤衫售出时,出现了滞销,于是决定降价促销,若要使第二批的销售利润不低于650元,剩余的T恤衫每件售价至少要多少元?(利润=售价-进价)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,点O为坐标原点,抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点B的坐标为(3,0),直线经过B、C两点.
(1)求抛物线的解析式;
(2)点P是x轴下方抛物线上一点,连接AC,过点P作PQ∥AC交BC于点Q,过点Q作x轴的平行线,过点P作y轴的平行线,两条直线相交于点K,PK交BC于点H,设QK的长为t,PH的长为d,求d与t之间的函数关系式;(不要求写出自变量t的取值范围)
(3)在(2)的条件下,PK交x轴于点R,过点R作RT⊥PQ,垂足为T,当PK=PT时,将线段QT绕点Q逆时针旋转90得到线段QL,M是线段PQ上一动点,过点M作直线AC的垂线,垂足为N,连接ON、ML,当ML∥ON时,求N点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知:四边形ABCD是平行四边形,点E在边BA的延长线上,CE交AD于点F,∠ECA=∠D
(1)求证:△EAC∽△ECB;
(2)若DF=AF,求AC:BC的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A是反比例函数的图象上的一个动点,连接OA,若将线段OA绕点O顺时针旋转90°得到线段OB,则点B所在图象的函数表达式为________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com