精英家教网 > 初中数学 > 题目详情
(2012•北京)若关于x的方程x2-2x-m=0有两个相等的实数根,则m的值是
-1
-1
分析:根据方程有两个相等的实数根,判断出根的判别式为0,据此求出m的值即可.
解答:解:∵关于x的方程x2-2x-m=0有两个相等的实数根,
∴△=0,
∴(-2)2-4×1×(-m)=0,
解得m=-1.
点评:本题考查了一元二次方程根的情况与判别式△的关系:
(1)△>0?方程有两个不相等的实数根;
(2)△=0?方程有两个相等的实数根;
(3)△<0?方程没有实数根.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•北京二模)如图,已知点M(-
3
,2)和抛物线y=
1
3
x2
,O为直角坐标系的原点.
(1)若直线y=kx+3经过点M,且与x轴交于点A,求∠MAO的度数;
(2)在(1)的条件下,将图中的抛物线向右平移,设平移后的抛物线与y轴交于点E,与直线AM的一个交点记作F,当EF∥x轴时,求抛物线的顶点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•北京)已知:如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接BE.
(1)求证:BE与⊙O相切;
(2)连接AD并延长交BE于点F,若OB=9,sin∠ABC=
23
,求BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•北京)已知二次函数y=(t+1)x2+2(t+2)x+
32
在x=0和x=2时的函数值相等.
(1)求二次函数的解析式;
(2)若一次函数y=kx+6的图象与二次函数的图象都经过点A(-3,m),求m和k的值;
(3)设二次函数的图象与x轴交于点B,C(点B在点C的左侧),将二次函数的图象在点B,C间的部分(含点B和点C)向左平移n(n>0)个单位后得到的图象记为G,同时将(2)中得到的直线y=kx+6向上平移n个单位.请结合图象回答:当平移后的直线与图象G有公共点时,求n的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•北京)在△ABC中,BA=BC,∠BAC=α,M是AC的中点,P是线段BM上的动点,将线段PA绕点P顺时针旋转2α得到线段PQ.
(1)若α=60°且点P与点M重合(如图1),线段CQ的延长线交射线BM于点D,请补全图形,并写出∠CDB的度数;

(2)在图2中,点P不与点B,M重合,线段CQ的延长线于射线BM交于点D,猜想∠CDB的大小(用含α的代数式表示),并加以证明;
(3)对于适当大小的α,当点P在线段BM上运动到某一位置(不与点B,M重合)时,能使得线段CQ的延长线与射线BM交于点D,且PQ=QD,请直接写出α的范围.

查看答案和解析>>

同步练习册答案