精英家教网 > 初中数学 > 题目详情

【题目】如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=(
A.
B.
C.
D. ﹣2

【答案】A
【解析】解:∵AB=AD=6,AM:MB=AN:ND=1:2, ∴AM=AN=2,BM=DN=4,
连接MN,连接AC,

∵AB⊥BC,AD⊥CD,∠BAD=60°
在Rt△ABC与Rt△ADC中,

∴Rt△ABC≌Rt△ADC(HL)
∴∠BAC=∠DAC= ∠BAD=30°,MC=NC,
∴BC= AC,
∴AC2=BC2+AB2 , 即(2BC)2=BC2+AB2
3BC2=AB2
∴BC=2
在Rt△BMC中,CM= = =2
∵AN=AM,∠MAN=60°,
∴△MAN是等边三角形,
∴MN=AM=AN=2,
过M点作ME⊥CN于E,设NE=x,则CE=2 ﹣x,
∴MN2﹣NE2=MC2﹣EC2 , 即4﹣x2=(2 2﹣(2 ﹣x)2
解得:x=
∴EC=2 =
∴ME= =
∴tan∠MCN= =
故选:A.
连接AC,通过三角形全等,求得∠BAC=30°,从而求得BC的长,然后根据勾股定理求得CM的长,连接MN,过M点作ME⊥CN于E,则△MNA是等边三角形求得MN=2,设NE=x,表示出CE,根据勾股定理即可求得ME,然后求得tan∠MCN.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB∥CD,点G、E、F分别在AB、CD上,FG平分∠CFE,若∠1=40°,求∠FGE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】平面直角坐标系xOy中,已知抛物线y=x2+bx+c经过(﹣1,m2+2m+1)、(0,m2+2m+2)两点,其中m为常数.
(1)求b的值,并用含m的代数式表示c;
(2)若抛物线y=x2+bx+c与x轴有公共点,求m的值;
(3)设(a,y1)、(a+2,y2)是抛物线y=x2+bx+c上的两点,请比较y2﹣y1与0的大小,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一辆货车从甲地匀速驶往乙地,到达后用了半小时卸货,随即匀速返回,已知货车返回的速度是它从甲地驶往乙地的速度的1.5倍.货车离甲地的距离y(千米)关于时间x(小时)的函数图象如图所示.则a=(小时).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小明从点A处出发,沿着坡角为α的斜坡向上走了0.65千米到达点B,sinα= ,然后又沿着坡度为i=1:4的斜坡向上走了1千米达到点C.问小明从A点到点C上升的高度CD是多少千米(结果保留根号)?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】八(2)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):

7

8

9

7

10

10

9

10

10

10

10

8

7

9

8

10

10

9

10

9


(1)甲队成绩的中位数是分,乙队成绩的众数是分;
(2)计算乙队的平均成绩和方差;
(3)已知甲队成绩的方差是1.4分2 , 则成绩较为整齐的是队.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,反比例函数y= (x<0)的图象经过点A(﹣1,1),过点A作AB⊥y轴,垂足为B,在y轴的正半轴上取一点P(0,t),过点P作直线OA的垂线l,以直线l为对称轴,点B经轴对称变换得到的点B′在此反比例函数的图象上,则t的值是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将透明三角形纸片PAB的直角顶点P落在第四象限,顶点A、B分别落在反比例函数y= 图象的两支上,且PB⊥x于点C,PA⊥y于点D,AB分别与x轴,y轴相交于点E、F.已知B(1,3).

(1)k=
(2)试说明AE=BF;
(3)当四边形ABCD的面积为 时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△AOB为等腰三角形,顶点A的坐标(2, ),底边OB在x轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A′O′B,点A的对应点A′在x轴上,则点O′的坐标为( )

A.(
B.(
C.(
D.( ,4

查看答案和解析>>

同步练习册答案