ÔĶÁÏÂÁвÄÁÏ£º
¡ß
1
1¡Á3
=
1
2
(1-
1
3
)
£¬
1
3¡Á5
=
1
2
(
1
3
-
1
5
)
£¬
1
5¡Á7
=
1
2
(
1
5
-
1
7
)
£¬¡­
1
17¡Á19
=
1
2
(
1
17
-
1
19
)
£¬
¡à
1
1¡Á3
+
1
3¡Á5
+
1
5¡Á7
+¡­+
1
17¡Á19

=
1
2
(1-
1
3
)+
1
2
(
1
3
-
1
5
)+
1
2
(
1
5
-
1
7
)+¡­+
1
2
(
1
17
-
1
19
)

=
1
2
(1-
1
3
+
1
3
-
1
5
+
1
5
-
1
7
+¡­+
1
17
-
1
19
)

=
1
2
(1-
1
19
)=
9
19
£®
½â´ðÏÂÁÐÎÊÌ⣺
£¨1£©ÔÚºÍʽ
1
1¡Á3
+
1
3¡Á5
+
1
5¡Á7
+¡­
ÖУ¬µÚ6ÏîΪ
 
£¬µÚnÏîÊÇ
 
£®
£¨2£©ÉÏÊöÇóºÍµÄÏë·¨ÊÇͨ¹ýÄæÓÃ
 
·¨Ôò£¬½«ºÍʽÖеĸ÷·ÖÊýת»¯ÎªÁ½¸öÊýÖ®²î£¬Ê¹µÃ³ýÊ×Ä©Á½ÏîÍâµÄÖмä¸÷Ïî¿ÉÒÔ
 
£¬´Ó¶ø´ïµ½ÇóºÍµÄÄ¿µÄ£®
£¨3£©ÊÜ´ËÆô·¢£¬ÇëÄã½âÏÂÃæµÄ·½³Ì£º
1
x(x+3)
+
1
(x+3)(x+6)
+
1
(x+6)(x+9)
=
3
2x+18
£®
·ÖÎö£º´ËÌâÊÇÔĶÁ·ÖÎöÌ⣬½â´ËÌâµÄ¹Ø¼üÊÇÈÏÕæÉóÌ⣬ÕÒµ½¹æÂÉ£¨Á½¸öÁ¬ÐøÆæÊýµÄ»ýµÄµ¹ÊýµÈÓÚËüÃǵĵ¹Êý²îµÄÒ»°ë£©£¬ÔÙÒÀ¾Ý¹æÂɽâÌâ¼´¿É£®
½â´ð£º½â£º£¨1£©
1
11¡Á13
£¬
1
(2n-1)(2n+1)
£»

£¨2£©·Öʽ¼õ·¨£¬¶ÔÏû£»

£¨3£©½«·Öʽ·½³Ì±äÐÎΪ
1
3
(
1
x
-
1
x+3
+
1
x+3
¡­-
1
x+9
)
=
3
2x+18
£®
ÕûÀíµÃ
1
x
-
1
x+9
=
9
2(x+9)
£¬·½³ÌÁ½±ß¶¼³ËÒÔ2x£¨x+9£©£¬µÃ
2£¨x+9£©-2x=9x£¬½âµÃx=2£®
¾­¼ìÑ飬x=2ÊÇÔ­·Öʽ·½³ÌµÄ¸ù£®
µãÆÀ£º´Ë·½³ÌÈôÓ󣹿·½·¨À´½â£¬ÏÔÈ»ºÜÄÑ£¬ÕâÖÖÏȲð·Ö·Öʽ»¯¼òºóÔÙ½â·Öʽ·½³ÌµÄ·½·¨²»Ê§ÊÇÒ»ÖÖ¼¼ÇÉ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

ÔĶÁÏÂÁвÄÁÏ£º
¡ß
1
1¡Á3
=
1
2
(1-
1
3
)
£»
1
3¡Á5
=
1
2
(
1
3
-
1
5
)
£»
1
5¡Á7
=
1
2
(
1
5
-
1
7
)
£»
1
2003¡Á2005
=
1
2
(
1
2003
-
1
2005
)

¡­
¡à
1
1¡Á3
+
1
3¡Á5
+
1
5¡Á7
+¡­+
1
2003¡Á2005

=
1
2
(1-
1
3
+
1
3
-
1
5
+
1
5
-
1
7
+¡­+
1
2003
-
1
2005
)

½â´ðÏÂÁÐÎÊÌ⣺
£¨1£©ÔÚºÍʽ
1
1¡Á3
+
1
3¡Á5
+
1
5¡Á7
+¡­
ÖУ¬µÚ5ÏîΪ
 
£¬µÚnÏîΪ
 
£¬ÉÏÊöÇóºÍµÄÏë·¨ÊÇ£º½«ºÍʽÖеĸ÷·ÖÊýת»¯ÎªÁ½¸öÊýÖ®²î£¬Ê¹µÃÊ×Ä©Á½ÏîÍâµÄÖмä¸÷Ïî¿ÉÒÔ
 
£¬´Ó¶ø´ïµ½ÇóºÍÄ¿µÄ£®
£¨2£©ÀûÓÃÉÏÊö½áÂÛ¼ÆËã
1
x(x+2)
+
1
(x+2)(x+4)
+
1
(x+4)(x+6)
+¡­+
1
(x+2004)(x+2006)
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

ÇëÔĶÁÏÂÁвÄÁÏ£º
¡ß
1
1¡Á3
=
1
2
(1-
1
3
)
£»
1
3¡Á5
=
1
2
(
1
3
-
1
5
)
£»
1
5¡Á7
=
1
2
(
1
5
-
1
7
)
£»
¡­
1
2007¡Á2009
=
1
2
(
1
2007
-
1
2009
)

¡à
1
1¡Á3
+
1
3¡Á5
+
1
5¡Á7
+¡­+
1
2007¡Á2009

=
1
2
(
1
1
-
1
3
+
1
3
-
1
5
+
1
5
-
1
7
+¡­+
1
2007
-
1
2009
)

=
1
2
¡Á(1-
1
2009
)

=
1004
2009

½â´ðÏÂÁÐÎÊÌ⣺
£¨1£©ÔÚºÍʽ
1
1¡Á3
+
1
3¡Á5
+
1
5¡Á7
+¡­
ÖУ¬µÚ5ÏîΪ
 
£¬µÚnÏîΪ
1
(2n-1)(2n+1)
£¬ÉÏÊöÇóºÍµÄÏë·¨ÊÇ£º½«ºÍʽÖеĸ÷·ÖÊýת»¯ÎªÁ½¸öÊýÖ®²î£¬Ê¹µÃÊ×Ä©Á½ÏîÍâµÄÖмä¸÷Ïî¿ÉÒÔ
 
£¬´Ó¶ø´ïµ½ÇóºÍÄ¿µÄ£®
£¨2£©ÀûÓÃÉÏÊö½áÂÛ¼ÆËã
1
x(x+2)
+
1
(x+2)(x+4)
+
1
(x+4)(x+6)
+¡­+
1
(x+2008)(x+2010)

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

ÔĶÁÏÂÁвÄÁÏ£º
¡ß
1
1¡Á3
=
1
2
(1-
1
3
)£¬
1
3¡Á5
=
1
2
(
1
3
-
1
5
)£¬
1
5¡Á7
=
1
2
(
1
5
-
1
7
)¡­
1
17¡Á19
=
1
2
(
1
17
-
1
19
)

¡à
1
1¡Á3
+
1
3¡Á5
+
1
5¡Á7
+
1
7¡Á9
+¡­+
1
17¡Á19
=
1
2
(1-
1
3
+
1
3
-
1
5
+¡­+
1
17
-
1
19
)=
9
19

½â´ðÎÊÌ⣺
£¨1£©ÔÚʽ
1
1¡Á3
+
1
3¡Á5
+
1
5¡Á7
¡­
ÖУ¬µÚÁùÏîΪ
 
£¬µÚnÏîΪ
 
£¬ÉÏÊöÇóºÍµÄÏë·¨ÊÇͨ¹ýÄæÓÃ
 
·¨Ôò£¬½«Ê½Öи÷·ÖÊýת»¯ÎªÁ½¸öʵÊýÖ®²î£¬Ê¹µÃ³ýÊ×Ä©Á½ÏîÍâµÄÖмä¸÷Ïî¿ÉÒÔ
 
´Ó¶ø´ïµ½ÇóºÍµÄÄ¿µÄ£»
£¨2£©½â·½³Ì
1
x(x+2)
+
1
(x+2)(x+4)
+¡­+
1
(x+8)(x+10)
=
5
24
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔĶÁÏÂÁвÄÁÏ£º
1
1¡Á3
=
1
2
(1-
1
3
)
£¬
1
3¡Á5
=
1
2
(
1
3
-
1
5
)
£¬
1
5¡Á7
=
1
2
(
1
5
-
1
7
)
£¬¡­
ÊÜ´ËÆô·¢£¬ÇëÄã½âÏÂÃæµÄ·½³Ì£º
1
x(x+3)
+
1
(x+3)(x+6)
+
1
(x+6)(x+9)
=
3
2x+18
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔĶÁÏÂÁвÄÁÏ£º
1
1+
2
=
2
-1
(1+
2
)(
2
-1)
=
2
-1£¬
1
2
+
3
=
3
-
2
(
2
+
3
)(
3
-
2
)
=
3
-
2
£¬
1
3
+2
=
2-
3
(
3
+2)(2-
3
)
=2-
3
£¬
1
2+
5
=
5
-2
(2+
5
)(
5
-2)
=
5
-2£®¶ÁÍêÒÔÉϲÄÁÏ£¬ÇëÄã¼ÆËãÏÂÁи÷Ì⣺
£¨1£©
1
3+
10
=
10
-3
10
-3
£»
£¨2£©
1
n
+
n+1
=
n+1
-
n
n+1
-
n
£»
£¨3£©
1
1+
2
+
1
2
+
3
+
1
3
+2
+¡­+
1
2010
+
2011
=
2011
-1
2011
-1
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸