精英家教网 > 初中数学 > 题目详情

已知:二次函数y=ax2+2ax的图象与x轴负半轴的交点为A,将点A绕坐标原点O顺时针旋转120°后得点B.
(1)若B点在已知的二次函数的图象上,求a的值;
(2)在(1)的条件下,设二次函数图象的顶点为C,判断直线OC与△AOB的外接圆位置关系.

解:(1)∵y=ax2+2ax=ax(x+2),
∴当y=0时,ax(x+2)=0,
解得:x=0或x=-2,
∵二次函数y=ax2+2ax的图象与x轴负半轴的交点为A,
∴点A(-2,0),
即OA=2,
∵将点A绕坐标原点O顺时针旋转120°后得点B.
∴∠AOB=120°,OB=OA=2,
∴∠BOD=30°,
过点B作BD⊥y轴于点D,
∴BD=OB=1,OD=OB=
∴点B的坐标为(1,),
∵B点在已知的二次函数的图象上,
∴a+2a=
解得:a=

(2)直线OC与△AOB的外接圆相切.
理由:设OB的中点为F,过点F作EF⊥OB交AO的垂直平分线于点E,连接OE,
即点E是△AOB外接圆的圆心;
∵AO的垂直平分线即是抛物线的对称轴,
∴点E的横坐标为-1,
∵直线OB的解析式为:y=x,
∴设直线EF的解析式为:y=-x+b,
∵点F(1,),
∴-+b=
解得:b=
∴直线EF的解析式为:y=-x+
当x=-1时,y=
∴点E的坐标为(-1,),
∴tan∠EOG=
∴∠EOG=60°,
∵y=x2+x=(x+1)2-
∴点C(-1,-),
∴tan∠COG=
∴∠COG=30°,
∴∠COE=∠COG+∠EOG=90°,
即EO⊥OC,
∴直线OC与△AOB的外接圆相切.
分析:(1)由二次函数y=ax2+2ax的图象与x轴负半轴的交点为A,易求得点A的坐标,又由将点A绕坐标原点O顺时针旋转120°后得点B,可得∠BOD=30°,OB=OA=2,然后过点B作BD⊥y轴于点D,即可求得点B的坐标,再代入二次函数的解析式,即可求得a的值;
(2)由△AOB的外接圆的圆心是△AOB的三边的垂直平分线的交点,可设OB的中点为F,过点F作EF⊥OB交AO的垂直平分线于点E,连接OE,确定点E是△AOB外接圆的圆心;然后求得点E的坐标,可证得OE⊥OC,即可判定直线OC与△AOB的外接圆相切.
点评:此题考查了待定系数法求二次函数的解析式、二次函数的性质、三角形的外接圆以及切线的判定.此题难度较大,注意掌握辅助线的作法,注意数形结合思想与方程思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:二次函数的表达式为y=2x2+4x-1.
(1)设这个函数图象的顶点坐标为P,与y轴的交点为A,求P、A两点的坐标;
(2)将二次函数的图象向上平移1个单位,设平移后的图象与x轴的交点为B、C(其中点B在点C的左侧),求B、C两点的坐标及tan∠APB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:二次函数y=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,其中点A的坐标是(-2,0),点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OC<OB)是方程x2-10x+24=0的两个根.
(1)求B、C两点的坐标;
(2)求这个二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:二次函数y=x2-2(m-1)x-1-m的图象与x轴交于A(x1,0)、B(x2,0),x1<0<x2,与y轴交于点C,且满足
1
AO
-
1
OB
=
2
CO

(1)求这个二次函数的解析式;
(2)是否存在着直线y=kx+b与抛物线交于点P、Q,使y轴平分△CPQ的面积?若存在,求出k、b应满足的条件;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:二次函数y=x2+bx+c的图象与x轴交于A,B两点,其中A点坐标为(-3,0),与y轴精英家教网交于点C,点D(-2,-3)在抛物线上.
(1)求抛物线的解析式;
(2)抛物线的对称轴上有一动点P,求出PA+PD的最小值;
(3)点G抛物线上的动点,在x轴上是否存在点E,使B、D、E、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的E点坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:二次函数y=ax2+bx+c(a≠0)中的x和y满足下表:
x 0 1 2 3 4 5
y 3 0 -1 0 m 8
(1)可求得m的值为
3
3

(2)求出这个二次函数的解析式;
(3)当0<x<3时,则y的取值范围为
-1≤y<3
-1≤y<3

查看答案和解析>>

同步练习册答案