精英家教网 > 初中数学 > 题目详情
如图(1),已知正方形ABCD在直线MN的上方,BC在直线MN上,E是线段BC上一点,以AE为边在直线MN的上方作正方形AEFG
(1)连接GD,求证:△ADG≌△ABE;
(2)连接FC,求证:∠FCN=45°,并说明理由;
(3)当E点在CB的延长线上时,如图(2),连接FC,则∠FCN等于多少度?请说明理由.
分析:(1)根据正方形性质得出AG=AE,AD=AB,∠GAE=∠BAD=90°,求出∠GAD=∠EAB,根据SAS推出两三角形全等即可.
(2)过F作FQ⊥BC于Q,根据正方形的性质得出AB=BC,∠ABE=∠EQF=∠AEF=90°,AE=EF,求出∠BAE=∠FEQ,证△ABE≌△EQF,推出BE=FQ,AB=EQ=BC,求出BE=CQ=FQ,即可得出∠FCQ=∠CFQ=45°.
(3)过F作FQ⊥BC于Q,根据正方形的性质得出AB=BC,∠ABE=∠EQF=∠AEF=90°,AE=EF,求出∠BAE=∠FEQ,证△ABE≌△EQF,推出BE=FQ,AB=EQ=BC,求出BE=CQ=FQ,即可得出∠FCQ=∠CFQ=45°,即可求出答案.
解答:(1)证明:∵四边形ABCD和四边形AEFG是正方形,
∴AG=AE,AD=AB,∠GAE=∠BAD=90°,
∴∠GAE-∠DAE=∠DAB-∠DAE,
∴∠GAD=∠EAB,
在△ADG和△ABE中,
AD=AB
∠GAD=∠EAB
AG=AE

∴△ADG≌△ABE(SAS).

(2)证明:过F作FQ⊥BC于Q,
∵四边形ABCD、AEFG是正方形,
∴AB=BC,∠ABE=∠EQF=∠AEF=90°,AE=EF,
∴∠BAE+∠AEB=90°,∠AEB+∠FEQ=90°,
∴∠BAE=∠FEQ,
在△ABE和△EQF中,
∠BAE=∠FEQ
∠ABE=∠EQF
AE=EF

∴△ABE≌△EQF(AAS),
∴BE=FQ,AB=EQ=BC,
∴BC-EC=EQ-EC,
∴BE=CQ=FQ,
∵∠FQE=90°,
∴∠FCQ=∠CFQ=
1
2
(180°-90°)=45°.

(3)解:∠FCN=135°,
理由是:过F作FQ⊥BC于Q,
∵四边形ABCD、AEFG是正方形,
∴AB=BC,∠ABE=∠EQF=∠AEF=90°,AE=EF,
∴∠BAE+∠AEB=90°,∠AEB+∠FEQ=90°,
∴∠BAE=∠FEQ,
在△ABE和△EQF中
∠BAE=∠FEQ
∠ABE=∠EQF
AE=EF

∴△ABE≌△EQF(AAS),
∴BE=FQ,AB=EQ=BC,
∴BC-BQ=EQ-BQ,
∴BE=CQ=FQ,
∵∠FQE=90°,
∴∠FCQ=∠CFQ=
1
2
(180°-90°)=45°,
∴∠FCN=180°-45°=135°.
点评:本题考查了全等三角形的性质和判定,三角形内角和定理,正方形性质的应用,主要考查学生的推理能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图(1),已知,矩形ABCD的边AD=3,对角线长为5,将矩形ABCD置于直角坐标系内,点C与原点O重合,且反比例函数的图象的一个分支位于第一象限.
①求图(1)中,点A的坐标是多少?
②若矩形ABCD从图(1)的位置开始沿x轴的正方向移动,每秒移动1个单位,1秒后点A刚好落在反比例函数的图象上,如图(2),求反比例函数的表达式.
③矩形ABCD继续向x轴的正方向移动,AB、AD与反比例函数图象分别交于P、Q两点,如图(3),设移动总时间为t(1<t<5),分别写出△PBC的面积S1、△QDC的面积S2与t的函数关系式,并求当t为何值时,S2=
107
S1

查看答案和解析>>

科目:初中数学 来源: 题型:

如图甲所示,已知抛物线经过原点O和x轴上另一点E,顶点M的坐标为(2,4);
(1)求抛物线函数关系式;
(2)矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3,将矩形ABCD以每秒1个单位长度的速度从图甲所示的位置沿x轴的正方向匀速平移,同时一动点P也以相同的速度从点A出发向B匀速移动,设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图乙所示).
①当t=
52
时,判断点P是否在直线ME上,并说明理由;
②设以P、N、C、D为顶点的多边形面积为S,试问S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由;
③现将甲图中的抛物线向右平移m(m>0)个单位,所得抛物线与x轴交于G、F两点,与原抛物线交于点Q,设△FGQ的面积为S,求S关于m的函关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图(1),已知,矩形ABCD的边AD=3,对角线长为5,将矩形ABCD置于直角坐标系内,点C与原点O重合,且反比例函数的图象的一个分支位于第一象限.
①求图(1)中,点A的坐标是多少?
②若矩形ABCD从图(1)的位置开始沿x轴的正方向移动,每秒移动1个单位,1秒后点A刚好落在反比例函数的图象上,如图(2),求反比例函数的表达式.
③矩形ABCD继续向x轴的正方向移动,AB、AD与反比例函数图象分别交于P、Q两点,如图(3),设移动总时间为t(1<t<5),分别写出△PBC的面积S1、△QDC的面积S2与t的函数关系式,并求当t为何值时,S2=数学公式S1

查看答案和解析>>

科目:初中数学 来源:2012-2013学年贵州省毕节地区太来中学九年级(上)期中数学试卷(解析版) 题型:解答题

如图(1),已知,矩形ABCD的边AD=3,对角线长为5,将矩形ABCD置于直角坐标系内,点C与原点O重合,且反比例函数的图象的一个分支位于第一象限.
①求图(1)中,点A的坐标是多少?
②若矩形ABCD从图(1)的位置开始沿x轴的正方向移动,每秒移动1个单位,1秒后点A刚好落在反比例函数的图象上,如图(2),求反比例函数的表达式.
③矩形ABCD继续向x轴的正方向移动,AB、AD与反比例函数图象分别交于P、Q两点,如图(3),设移动总时间为t(1<t<5),分别写出△PBC的面积S1、△QDC的面积S2与t的函数关系式,并求当t为何值时,S2=S1

查看答案和解析>>

科目:初中数学 来源:2011-2012学年浙江省衢州市江山二中九年级(上)第一次质量检测数学试卷(解析版) 题型:解答题

如图甲所示,已知抛物线经过原点O和x轴上另一点E,顶点M的坐标为(2,4);
(1)求抛物线函数关系式;
(2)矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3,将矩形ABCD以每秒1个单位长度的速度从图甲所示的位置沿x轴的正方向匀速平移,同时一动点P也以相同的速度从点A出发向B匀速移动,设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图乙所示).
①当时,判断点P是否在直线ME上,并说明理由;
②设以P、N、C、D为顶点的多边形面积为S,试问S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由;
③现将甲图中的抛物线向右平移m(m>0)个单位,所得抛物线与x轴交于G、F两点,与原抛物线交于点Q,设△FGQ的面积为S,求S关于m的函关系式.

查看答案和解析>>

同步练习册答案