精英家教网 > 初中数学 > 题目详情
(2012•济宁)如图,抛物线y=ax2+bx-4与x轴交于A(4,0)、B(-2,0)两点,与y轴交于点C,点P是线段AB上一动点(端点除外),过点P作PD∥AC,交BC于点D,连接CP.
(1)求该抛物线的解析式;
(2)当动点P运动到何处时,BP2=BD•BC;
(3)当△PCD的面积最大时,求点P的坐标.
分析:(1)该抛物线的解析式中有两个待定系数,只需将点A、B的坐标代入解析式中求解即可.
(2)首先设出点P的坐标,由PD∥AC得到△BPD∽△BAC,通过比例线段可表示出BD的长;BC的长易得,根据题干给出的条件BP2=BD•BC即可求出点P的坐标.
(3)由于PD∥AC,根据相似三角形△BPD、△BAC的面积比,可表示出△BPD的面积;以BP为底,OC为高,易表示出△BPC的面积,△BPC、△BPD的面积差为△PDC的面积,通过所列二次函数的性质,即可确定点P的坐标.
解答:解:(1)由题意,得
16a+4b-4=0
4a-2b-4=0

解得
a=
1
2
b=-1

∴抛物线的解析式为y=
1
2
x2
-x-4;

(2)设点P运动到点(x,0)时,有BP2=BD•BC,
令x=0时,则y=-4,
∴点C的坐标为(0,-4).
∵PD∥AC,
∴△BPD∽△BAC,
BD
BC
=
BP
BA

∵BC=
BO2+OC2
=
22+42
=2
5

AB=6,BP=x-(-2)=x+2.
∴BD=
BP×BC
BA
=
2
5
(x+2)
6
=
5
(x+2)
3

∵BP2=BD•BC,
∴(x+2)2=
5
(x+2)
3
×2
5

解得x1=
4
3
,x2=-2(-2不合题意,舍去),
∴点P的坐标是(
4
3
,0),即当点P运动到(
4
3
,0)时,BP2=BD•BC;

(3)∵△BPD∽△BAC,
S△BPD
S△BAC
=(
BP
AB
)
2

S△BPD=(
BP
AB
)
2
S△BAC(
x+2
6
)
2
×
1
2
×6×4=
(x+2)2
3

S△PDC=S△PBC-S△PBD=
1
2
×(x+2)×4-
(x+2)2
3
= -
1
3
(x-1)2+3

-
1
3
<0

∴当x=1时,S△PDC有最大值为3.
即点P的坐标为(1,0)时,△PDC的面积最大.
点评:该题综合了相似三角形、图形面积的求法等知识,难度系数大,(3)题中,将所求三角形的面积进行适当的转化是解题的关键所在.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•济宁)如图,在平面直角坐标系中,有一Rt△ABC,且A(-1,3),B(-3,-1),C(-3,3),已知△A1AC1是由△ABC旋转得到的.
(1)请写出旋转中心的坐标是
O(0,0)
O(0,0)
,旋转角是
90
90
度;
(2)以(1)中的旋转中心为中心,分别画出△A1AC1顺时针旋转90°、180°的三角形;
(3)设Rt△ABC两直角边BC=a、AC=b、斜边AB=c,利用变换前后所形成的图案证明勾股定理.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•济宁)如图,将矩形ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=12厘米,EF=16厘米,则边AD的长是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•济宁)如图,是由若干个完全相同的小正方体组成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•济宁)如图,在平面直角坐标系中,点P坐标为(-2,3),以点O为圆心,以OP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于(  )

查看答案和解析>>

同步练习册答案