精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,点O为坐标原点,直线y=﹣x+n与x轴、y轴分别交于B、C两点,抛物线y=ax2+bx+3(a≠0)过C、B两点,交x轴于另一点A,连接AC,且tan∠CAO=3.
(1)求抛物线的解析式;
(2)若点P是射线CB上一点,过点P作x轴的垂线,垂足为H,交抛物线于Q,设P点横坐标为t,线段PQ的长为d,求出d与t之间的函数关系式,并写出相应的自变量t的取值范围;
(3)在(2)的条件下,当点P在线段BC上时,设PH=e,已知d,e是以y为未知数的一元二次方程:y2-(m+3)y+(5m2-2m+13)="0" (m为常数)的两个实数根,点M在抛物线上,连接MQ、MH、PM,且.MP平分∠QMH,求出t值及点M的坐标.
(1) y=-x2+2x+3;(2) ;(3)t="1," (1+,2)和(1-,2).

试题分析:(1)当x=0时代入抛物线y=ax2+bx+3(a≠0)就可以求出y=3而得出C的坐标,就可以得出直线的解析式,就可以求出B的坐标,在直角三角形AOC中,由三角形函数值就可以求出OA的值,得出A的坐标,再由待定系数法建立二元一次方程组求出其解就可以得出结论;
(2)分两种情况讨论,当点P在线段CB上时,和如图3点P在射线BN上时,就有P点的坐标为(t,-t+3),Q点的坐标为(t,-t2+2t+3),就可以得出d与t之间的函数关系式而得出结论;
(3)根据根的判别式就可以求出m的值,就可以求出方程的解而求得PQ和PH的值,延长MP至L,使LP=MP,连接LQ、LH,如图2,延长MP至L,使LP=MP,连接LQ、LH,就可以得出四边形LQMH是平行四边形,进而得出四边形LQMH是菱形,由菱形的性质就可以求出结论.
试题解析:(1)当x=0,则y=-x+n=0+n=n,y=ax2+bx+3=3,
∴OC=3=n.
当y=0,
∴-x+3=0,x=3=OB,
∴B(3,0).
在△AOC中,∠AOC=90°,tan∠CAO=
∴OA=1,
∴A(-1,0).
将A(-1,0),B(3,0)代入y=ax2+bx+3,


解得:
∴抛物线的解析式:y=-x2+2x+3;
(2) 如图1,

∵P点的横坐标为t 且PQ垂直于x轴 ∴P点的坐标为(t,-t+3),
Q点的坐标为(t,-t2+2t+3).
∴PQ=|(-t+3)-(-t2+2t+3)|="|" t2-3t |

∵d,e是y2-(m+3)y+(5m2-2m+13)=0(m为常数)的两个实数根,
∴△≥0,即△=(m+3)2-4× (5m2-2m+13)≥0
整理得:△= -4(m-1)2≥0,∵-4(m-1)2≤0,
∴△=0,m=1,
∴ PQ与PH是y2-4y+4=0的两个实数根,解得y1=y2=2
∴ PQ=PH=2,∴-t+3=2,∴t="1,"
∴此时Q是抛物线的顶点,
延长MP至L,使LP=MP,连接LQ、LH,如图2,

∵LP=MP,PQ=PH,∴四边形LQMH是平行四边形,
∴LH∥QM,∴∠1=∠3,∵∠1=∠2,∴∠2=∠3,
∴LH=MH,∴平行四边形LQMH是菱形,
∴PM⊥QH,∴点M的纵坐标与P点纵坐标相同,都是2,
∴在y=-x2+2x+3令y=2,得x2-2x-1=0,∴x1=1+,x2=1-
综上:t值为1,M点坐标为(1+,2)和(1-,2)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=﹣x2+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知A点的坐标为A(﹣2,0).
(1)求抛物线的解析式及它的对称轴;
(2)求点C的坐标,连接AC、BC并求线段BC所在直线的解析式;
(3)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直角梯形OABC中,AB∥OC,点A坐标为(0,6),点C坐标为(3,0),BC=,一抛物线过点A、B、 C.
(1)填空:点B的坐标为   
(2)求该抛物线的解析式;
(3)作平行于x轴的直线与x轴上方的抛物线交于点E 、F,以EF为直径的圆恰好与x轴相切,求该圆的半径.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数的图象经过点(0,- 3),且顶点坐标为(1,- 4).求这个解析式。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,已知二次函数的图像经过原点及点A(1,2),与x轴相交于另一点B(3,0),将点B向右平移3个单位得点C.
(1)求二次函数的解析式;
(2)点M在线段OC上,平面内有一点Q,使得四边形ABMQ为菱形,求点M坐标;
(3)点P在线段OC上,从O点出发向C点运动,过P点作x轴的垂线,交直线AO于D点,以PD为边在PD的右侧作正方形PDEF(当P点运动时,点D、点E、点F也随之运动);
①当点E在二次函数的图像上时,求OP的长;
②若点P从O点出发向C点做匀速运动,速度为每秒1个单位长度,若P点运动t秒时,直线AC与以DE为直径的⊙M相切,直接写出此刻t的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,已知点A、B、C在x轴上,点D、E在y轴上,OA=OD=2,OC=OE=4,B为线段OA的中点,直线AD与经过B、E、C三点的抛物线交于F、G两点,与其对称轴交于M,点P为线段FG上一个动点(点P与F、G不重合),作PQ∥y轴与抛物线交于点Q.
(1)若经过B、E、C三点的抛物线的解析式为y=-x2+(2b-1)x+c-5,则b=         ,c=         (直接填空)
(2)①以P、D、E为顶点的三角形是直角三角形,则点P的坐标为         (直接填空)
②若抛物线顶点为N,又PE+PN的值最小时,求相应点P的坐标.
(3)连结QN,探究四边形PMNQ的形状:
①能否成为平行四边形
②能否成为等腰梯形?若能,请直接写出点P的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,抛物线y1=a(x+2)2-3与交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B、C,则以下结论:①无论x取何值,y2总是正数;②a=1;③当x=0时,y2-y1=4;④2AB=3AC.其中正确的是(    )

A.①②             B.②③           C.③④         D.①④

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

对于二次函数y=2(x+1)(x-3),下列说法正确的是( )
A.图象的开口向下
B.当x>1时,y随x的增大而减小
C.当x<1时,y随x的增大而减小
D.图象的对称轴是直线x=-1

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数y=2(x-3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x=-3;③其图象顶点坐标为(3,-1);④当x<3,y随x的增大而减小.则其中说法正确的有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

同步练习册答案