精英家教网 > 初中数学 > 题目详情
精英家教网等腰梯形ABCD中,AD∥BC,AB=DC,面积S=9.已知A(1,0),B(0,3)
(1)求C、D两点的坐标;
(2)取E点(0,1),连接DE并延长交AB于F,求证:DF⊥AB.
分析:(1)依题意设C(-m,3),则D(-m-1,0),根据梯形面积公式可求m=2,求出C,D两点坐标;
(2)通过证明△ODE≌△OBA,利用互余关系可证DF⊥AB.
解答:(1)解:依题意,设C(-m,3),则D(-m-1,0),BC=m,AD=m+2,
由梯形面积公式得(m+m+2)×3÷2=9,
解得m=2,
∴C(-2,3),D(-3,0);

(2)证明:∵OD=OB=3,∠DOE=∠BOA=90°,OE=OA=1,
在△ODE与△OBA中,
OD=OB
∠DOE=∠BOA
OE=OA

∴△ODE≌△OBA,
∴∠DEO=∠A,∠EDO+∠DEO=90°,
∴∠A+∠EDO=90°
∴DF⊥AB.
点评:本题考查了等腰梯形的性质和点的坐标,会用全等三角形解决垂直问题,本题综合性很强.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在等腰梯形ABCD中,AD∥BC,AD=4,BC=2,tanA=2,则梯形ABCD的面积是
 
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在等腰梯形ABCD中,AB∥CD,∠ABC=60°,AC平分∠DAB,E、F分别为对角线AC、DB的中点,且EF=4.求这个梯形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网(1)如图,在等腰梯形ABCD中,AD∥BC,AB∥DE,BC=8,AD=5,求EC的长.
(2)如图是一个外轮廓为矩形的机器零件平面示意图,根据图中的尺寸(单位:mm),计算两圆孔中心A和B的距离.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网在等腰梯形ABCD中,AD∥BC,BD平分∠ABC,∠C=60°,
(1)求AD:BC;
(2)若AD=2cm,求梯形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

等腰梯形ABCD中,AD=2,BC=4,高DF=2,则腰CD长是
5
5

查看答案和解析>>

同步练习册答案