3
分析:过点D作DE⊥AB于E,根据角平分线上的点到角的两边的距离相等可得CD=DE,然后利用“HL”证明△ACD和△AED全等,根据全等三角形对应边相等可得AE=AC,表示出BE,设DE=x,表示出BD,然后利用勾股定理列式计算即可得解.
解答:

解:如图,过点D作DE⊥AB于E,
∵AC=6,BC=8,
∴AB=

=10,
∵∠C=90°,AD是∠BAC的角平分线,
∴CD=DE,
在△ACD和△AED中,

,
∴△ACD≌△AED(HL),
∴AE=AC=6,
BE=AB-AE=10-6=4,
设DE=x,
则BD=8-x,
在Rt△BDE中,DE
2+BE
2=BD
2,
∴x
2+4
2=(8-x)
2,
解得x=3,即DE=3.
故答案为:3.
点评:本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,勾股定理的应用,作辅助线构造出全等三角形和直角三角形是解题的关键