精英家教网 > 初中数学 > 题目详情
如图1,在平面直角坐标系中,等边三角形ABC的两顶点坐标分别为A(1,0),B(2,
3
),CD为△ABC的中线,⊙M与△ACD的外接圆,BC交⊙M于点N.
(1)将直线AB绕点D顺时针旋转使得到的直线l与⊙M相切,求此时的旋转角及直线l的解析式;
(2)连接MN,试判断MN与CD是否互相垂直平分,并说明理由;
(3)在(1)中的直线l上是否存在点P,使△PAN为直角三角形?若存在,求出所有满足条件的点P的坐标;若不存在,请说明理由.(图2为备用图)
(1)连接MD,则∠MDA=60度,当AB绕点D,顺时针旋转使得到的直线l与圆M相切时,DM⊥AB,∠MDA=90度,所以,此时的旋转角是顺时针30度.未旋转时,点D坐标(1.5,
3
2
),可设直线与x的交点为P,那么PA=AD=1,则P(0,0),设出正比例函数解析式为y=kx,过点D,所以l的解析式为:y=
3
3
x;

(2)MN⊥CD,且与CD互相垂直平分,因为点N是BC的中点,MN是中位线,有CD⊥AB,MNAB,所以MN⊥CD,同时MN平分CD,同时利用MN连线与CD的交点及点C组成的两个三角形全等,得出CD也平分了MN;

(3)第1种情况:PA⊥AN,P(
3
4
3
4
);
第2种情况:PN⊥AN,P(
9
4
3
3
4
);
第3种情况:PA⊥PN,以AN为直径的圆与直线l的交点有2个,
AN=
3

设直线l上的点P坐标为(x,
3
3
x),则PA2+PN2=AN2=3,
N点坐标为(
5
2
3
2
),
(x-1)2+(
3
3
x)2+(x-
5
2
2+(
3
3
x-
3
2
2=3,
解得x=
6
4
,这是P点的横坐标,
∴P点纵坐标是
3
3
x.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

平面直角坐标系内有两条直线l1、l2,直线l1的解析式为y=-
2
3
x+1,如果将坐标纸折叠,使直线l1与l2重合,此时点(-2,0)与点(0,2)也重合.
(1)求直线l2的解析式;
(2)设直线l1与l2相交于点M,问:是否存在这样的直线l:y=x+t,使得如果将坐标纸沿直线l折叠,点M恰好落在x轴上若存在,求出直线l的解析式;若不存在,请说明理由;
(3)设直线l2与x轴的交点为A,与y轴的交点为B,以点C(0,
2
3
)为圆心,CA的长为半径作圆,过点B任作一条直线(不与y轴重合),与⊙C相交于D、E两点(点D在点E的下方)
①在如图所示的直角坐标系中画出图形;
②设OD=x,△BOD的面积为S1,△BEC的面积为S2
S1
S2
=y
,求y与x之间的函数关系式,并写出自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系内,直线y=2x经过点A(m,6),点B坐标为(4,0),
(1)求点A的坐标;
(2)若P为射线OA上的一点,当△POB是直角三角形时,求P点坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线y=
1
2
x+2
分别交x轴、y轴于点A、C,已知P是该直线在第一象限内的一点,PB⊥x轴于点B,S△APB=9.
(1)求△AOC的面积;
(2)求点P的坐标;
(3)设点R与点P在同一反比例函数的图象上,且点R在直线PB的右侧,作RT⊥x轴于点T,是否存在点R使得△BRT与△AOC相似,若存在,求点R的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

竹溪物流公司组织20辆汽车装运A、B、C三种竹溪特产共120吨去外地销售.按计划20辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满,根据如表提供的信息,解答以下问题:
(1)设装运A种土特产的车辆数为x,装运B种土特产的车辆数为y,求y与x之间的函数关系式;
竹溪土特产种类ABC
每辆汽车运载量(吨)865
每吨土特产获利(百元)121610
(2)如果装运每种土特产的车辆都不少于3辆,要使此次销售获利最大,应怎样安排车辆?并求出最大利润的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知一次函数y=kx+b的图象如图所示:

(1)写出点A、B的坐标,并求出k、b的值;
(2)在所给的平面直角坐标系内画出函数y=bx+k的图象.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知,点P(x,y)在第一象限,且点P(x,y)在直线l:x+y=12的图象上,点A(10,0)在x轴上,设△OPA的面积为S.
(1)求S关于x的关系式,并确定x的取值范围;
(2)画出S关于x的函数图象;
(3)在直线l上是否存在点M使△OAM是等腰三角形?若存在,求出点M的个数.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(1)已知y=
x-8
+
8-x
+18,求代数式
x
-
y
的值.
(2)已知y-2与x成正比例,当x=3时,y=1,求y与x的函数表达式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1),点D是线段BC上的动点(与端点B、C不重合),过点D作直线y=-
1
2
x
+b交折线OAB于点E.记△ODE的面积为S,求S与b的函数关系式.

查看答案和解析>>

同步练习册答案