精英家教网 > 初中数学 > 题目详情
(1)已知y=
x-8
+
8-x
+18,求代数式
x
-
y
的值.
(2)已知y-2与x成正比例,当x=3时,y=1,求y与x的函数表达式.
(1)依题意,得
x-8=0,
解得x=8,
则y=18,
x
-
y
=
8
-
18
=2
2
-3
2
=-
2


(2)设y-2=kx(k≠0).
∵当x=3时,y=1,
∴1-2=3k,
解得k=-
1
3

故y与x的函数表达式是:y-2=-
1
3
x,即y=-
1
3
x+2.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图所示,直线l是一次函数y=kx+b的图象.
(1)求k、b的值;
(2)当x=2时,求y的值;
(3)当y=4时,求x的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,在平面直角坐标系中,等边三角形ABC的两顶点坐标分别为A(1,0),B(2,
3
),CD为△ABC的中线,⊙M与△ACD的外接圆,BC交⊙M于点N.
(1)将直线AB绕点D顺时针旋转使得到的直线l与⊙M相切,求此时的旋转角及直线l的解析式;
(2)连接MN,试判断MN与CD是否互相垂直平分,并说明理由;
(3)在(1)中的直线l上是否存在点P,使△PAN为直角三角形?若存在,求出所有满足条件的点P的坐标;若不存在,请说明理由.(图2为备用图)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知△ABC,∠BAC=90°,AB=AC=4,BD是AC边上的中线,分别以AB、AC所在的直线为x轴和y轴建立平面直角坐标系(如图).
(1)求直线BD的函数关系式;
(2)在BD所在的直线上求一点P,使四边形ABCP为平行四边形(保留作图痕迹),并简要说明作法,根据作图过程,说明作出的四边形是平行四边形;
(3)求出点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,在直角坐标系中,矩形ABCD的顶点A(1,0),对角线的交点P(
5
2
,1)
(1)写出B、C、D三点的坐标;
(2)若在线段AB上有一点E(3,0),过E点的直线将矩形ABCD的面积分为相等的两部分,求直线的解析式;
(3)若过C点的直线l将矩形ABCD的面积分为4:3两部分,并与y轴交于点M,求M点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线l1的解析表达式为y=-3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1
l2,交于点C.
(1)求点D的坐标;
(2)求直线l2的解析表达式;
(3)求△ADC的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

为缓解用电紧张矛盾,某电力公司特制定了新的用电收费标准,每月用电量x(度)与应付电费y(元)的关系如图所示.
(1)根据图象,请分别求出当0≤x≤50和x>50时,y与x的函数关系式;
(2)请回答:当每月用电量不超过50度时,收费标准是______;
当每月用电量超过50度时,收费标准是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

等腰直角三角形ABO中,OA=OB=8,将它放在平面直角坐标系内,OA在x轴的正半轴上,OB在y轴的正半轴上,点P、Q分别在线段AB、OA上,OQ=6,点P的坐标为(x,y),记△OPQ的面积为S.试求S关于x的函数解析式,并求出当S=15时,点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,直线y=-
3
4
x+6交x轴于点A,交y轴于点B.点P,点Q同时从原点出发作匀速运动,点P沿x轴正方向运动,点Q沿OB→BA方向运动,并同时到达点A.点P运动的速度为1厘米/秒.
(1)求点Q运动的速度;
(2)当点Q运动到线段BA上时,设点P运动的时间为x(秒),△POQ的面积为y(平方厘米),那么用x的代数式表示AQ=______,并求y与x的函数关系式;
(3)若将(2)中所得函数的自变量x的取值范围扩大到任意实数后,其函数图象上是否存在点M,使得点M与该函数图象和x轴的两个交点所组成的三角形面积等于△AOB的面积?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案