精英家教网 > 初中数学 > 题目详情
28、如图,Rt△ABC中,∠ACB=90°,CD⊥AB于D,AF平分∠CAB交CD于E,交CB于F,且EG∥AB交CB于G,试判断CF与GB的大小关系,并证明你的结论.
分析:首先过F做FH⊥AB且交于点H,连接EH,由Rt△ABC中,∠ACB=90°,易证得,CF=HF,△ACF≌△AHF,同理:△ACE≌△AHE,然后根据直角三角形的性质,证得四边形CEHF为菱形,四边形EGBH为平行四边形,根据菱形与平行四边形的性质,即可证得CF=GB.
解答:解:CF=GB.
理由:过F做FH⊥AB且交于点H,连接EH,
∵AF平分∠CAB交CD于E,∠ACB=90°,
∴CF=HF,∠CAF=∠HAF,
∴△ACF≌△AHF,
∴AC=AH,
同理:△ACE≌△AHE,
可知CE=EH,∠ACE=∠AHE,
在Rt△ACD中,∠CAD+∠ACD=90°,
在Rt△ABC中,∠CAB+∠B=90°,
又∵∠CAD与∠CAB为同一角,
∴∠ACD=∠B,
∴∠AHE=∠B,
∴EH∥BC,
∵CD⊥AB,FH⊥AB,
∴CD∥FH,
∴四边形CEHF为菱形,四边形EGBH为平行四边形,
∴CF=EH=,EH=GB,
∴CF=GB.
点评:此题考查了角平分线的性质,直角三角形的性质以及菱形与平行四边形的判定与性质等知识.此题综合性较强,难度适中,解题的关键是注意数形结合思想的应用,注意辅助线的作法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图,Rt△ABC中,∠ACB=90°,∠CAB=30°,用圆规和直尺作图,用两种方法把它分成两个三角形,且要求其中一个三角形是等腰三角形.(保留作图痕迹,不要求写作法和证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,Rt△ABC中,∠ACB=90°,tanB=
34
,D是BC点边上一点,DE⊥AB于E,CD=DE,AC+CD=18.
(1)求BC的长(2)求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠C=90°,BC=3,AC=4,若△ABC∽△BDC,则CD=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠C=90°,△ABC的内切圆⊙0与BC、CA、AB分别切于点D、E、F.
(1)若BC=40cm,AB=50cm,求⊙0的半径;
(2)若⊙0的半径为r,△ABC的周长为ι,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠ABC=90゜,BD⊥AC于D,∠CBD=α,AB=3,BC=4.
(1)求sinα的值; 
(2)求AD的长.

查看答案和解析>>

同步练习册答案