精英家教网 > 初中数学 > 题目详情
如图,在Rt△ABC中,∠BAC=90°,AB=3,AC=4,现将△ABC沿射线BC的方向平移a(a<5)个单位得到△DEF.
(1)求EF的长度;
(2)当a=3时,连接AE、BD,试判断AE、BD之间的位置关系,并说明理由;
(3)探究:当a为何值时,△ADE是等腰三角形.
分析:(1)在直角三角形中,利用勾股定理即可求出;
(2)连接AD,首先判断四边形ABED是平行四边形,再根据AB=BE,即可判定四边形ABED是菱形,根据菱形的性质,判断AE、BD之间的位置关系;
(3)此小题需要分三种情况进行讨论,①当a=AD=DE=3时,△ADE是等腰三角形;②当AE=DE=3时,△ADE是等腰三角形;③当AE=AD时,△ADE是等腰三角形;求出三种情况下的a的值即可.
解答:解:(1)在Rt△ABC中,∠BAC=90°,
∴BC=
AB2+AC2
=
32+42
=5,
∴EF=BC=5.

(2)AE、BD之间的位置关系是垂直且平分.
理由是:
连接AD.
∵AB∥DE,AD∥BE,
∴四边形ABED是平行四边形,
又∵AB=BE=3,
∴四边形ABED是菱形,
∴AE、BD垂直且平分.

(3)分三种情况讨论:
①如图1,当a=AD=DE=3时,△ADE是等腰三角形;
②如图2,当AE=DE=3时,△ADE是等腰三角形.
作EM⊥AD,垂足为M,则有:
AM=
1
2
AD=
1
2
a,
在Rt△AEM中,由勾股定理得:
AE2=AM2+EM2
即:32=2.42+(
1
2
a)2
解得a=3.6.
③方法一:
当a=2.5时,△ADE是等腰三角形.
∵当a=2.5时,BE=CE=2.5,
∵∠BAC=90°,
∴AE=
1
2
BC=2.5,
又∵AD=a,
∴AE=AD=2.5,
即当a=AE=AD=2.5时,△ADE是等腰三角形;
综上所述,当a=3或3.6或2.5时,△ADE是等腰三角形.
方法二:
如图3,当AE=AD时,△ADE是等腰三角形.
设Rt△ABC中BC边上的高为h,则有:
1
2
×3×4=
1
2
×5×h,解得h=2.4.
由已知可得:AC⊥DE,设垂足为点P,
∵AE=DE,
∴DP=EP=
1
2
DE=1.5,
∵SABED=BE×h=DE×AP,
即:2.4a=3AP,解得AP=0.8a,
在Rt△AEP中,∠APE=90°,
∴AE2=PE2+AP2,即:a2=1.52+(0.8a)2,解得:a=2.5,
即当a=AE=AD=2.5时,△ADE是等腰三角形;
综上所述,当a=3或3.6或2.5时,△ADE是等腰三角形.
点评:本题主要考查几何变换综合题,解答本题的关键是熟练掌握平移知识,平行四边形的判定、菱形的性质及运用分类思想解决问题的方法,此题难度较大,特别是第三问a不止一个数值,同学们解答的时候一定要细心.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•莆田质检)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D,点E是AB上一点,以AE为直径的⊙O过点D,且交AC于点F.
(1)求证:BC是⊙O的切线;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分别是∠BAC和∠ABC的平分线,它们相交于点D,求点D到BC的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,将三角板中一个30°角的顶点D放在AB边上移动,使这个30°角的两边分别与△ABC的边AC、BC相交于点E、F,且使DE始终与AB垂直.
(1)画出符合条件的图形.连接EF后,写出与△ABC一定相似的三角形;
(2)设AD=x,CF=y.求y与x之间函数解析式,并写出函数的定义域;
(3)如果△CEF与△DEF相似,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,BD⊥AC,sinA=
3
5
,则cos∠CBD的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连接DE,点P从点A出发,沿折线AD-DE-EB运动,到点B停止.点P在AD上以
5
cm/s的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s).
(1)当点P在线段DE上运动时,线段DP的长为
(t-2)
(t-2)
cm,(用含t的代数式表示).
(2)当点N落在AB边上时,求t的值.
(3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式.

查看答案和解析>>

同步练习册答案