精英家教网 > 初中数学 > 题目详情
已知平面直角坐标系xOy(如图),直线经过第一、二、三象限,与y轴交于点B,点A(2,t)在这条直线上,联结AO,△AOB的面积等于1.
(1)求b的值;
(2)如果反比例函数(k是常量,k≠0)的图象经过点A,求这个反比例函数的解析式.
【答案】分析:(1)连接OA,过A作AC垂直于y轴,由A的横坐标为2得到AC=2,对于直线解析式,令y=0求出x的值,表示出OB的长,三角形AOB面积以OB为底,AC为高表示出,根据已知三角形的面积求出OB的长,确定出B坐标,代入一次函数解析式中即可求出b的值;
(2)将A坐标代入一次函数求出t的值,确定出A坐标,将A坐标代入反比例解析式中求出k的值,即可确定出反比例解析式.
解答:解:(1)过A作AC⊥y轴,连接OA,
∵A(2,t),
∴AC=2,
对于直线y=x+b,令x=0,得到y=b,即OB=b,
∵S△AOB=OB•AC=OB=1,
∴b=1;

(2)由b=1,得到直线解析式为y=x+1,
将A(2,t)代入直线解析式得:t=1+1=2,即A(2,2),
把A(2,2)代入反比例解析式得:k=4,
则反比例解析式为y=
点评:此题考查了一次函数与反比例函数的交点问题,涉及的知识有:一次函数与坐标轴的交点,坐标与图形性质,待定系数法求函数解析式,熟练掌握待定系数法是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

21、已知平面直角坐标系中,△ABC的三个顶点的坐标分别为A(2,2),B(1,-1),C(3,0).
(1)在图1中,画出以点O为位似中心,放大△ABC到原来2倍的△A′B′C′;
(2)若点P是AB边上一点,平移△ABC后,点P的对应点的坐标是P′(a+3,b-2),在图2中画出平移后的△A′B′C′.

查看答案和解析>>

科目:初中数学 来源: 题型:

4、已知平面直角坐标系中点p(3,2),若将点P先沿x轴方向向右平移2个单位,再将它沿y轴方向向下平移1个单位,到达点Q处,则点Q的坐标为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知平面直角坐标系中有一线段AB,其中A(1,3)B(4,5),若A、B纵坐标不变,横坐标扩大为原来的2倍,则线段AB
 
向拉长为原来的
 
倍,若点A、B纵坐标不变,横坐标变成原来的
12
,则线段AB
 
向缩短为原来的
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知平面直角坐标系,A、B两点的坐标分别为A(2,-3),B(4,-1).若C(a,0),D(a+3,0)是x轴上的两个动点,则当a=
5
4
5
4
时,四边形ABDC的周长最短.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•上海)已知平面直角坐标系xOy(如图),直线y=
1
2
x+b
经过第一、二、三象限,与y轴交于点B,点A(2,t)在这条直线上,联结AO,△AOB的面积等于1.
(1)求b的值;
(2)如果反比例函数y=
k
x
(k是常量,k≠0)的图象经过点A,求这个反比例函数的解析式.

查看答案和解析>>

同步练习册答案