精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,过点A20)的直线ly轴交于点BtanOAB=,直线l上的点P位于y轴左侧,且到y轴的距离为1

1)求直线l的表达式;

2)若反比例函数的图象经过点P,求m的值.

【答案】1;(2

【解析】试题分析:(1)已知A20anOAB==,可求得OB=1,所以B01),设直线l的表达式为,用待定系数法即可求得直线l的表达式;(2)根据直线l上的点P位于y轴左侧,且到y轴的距离为1可得点P的横坐标为-1,代入一次函数的解析式求得点P的纵坐标,把点P的坐标代入反比例函数中,即可求得m的值.

试题解析:(1) ∵A20),∴OA=2.

tanOAB==,

∴OB="1." ∴B01.

设直线l的表达式为,则

.

直线l的表达式为.

(2) ∵Py轴的距离为1,且点Py轴左侧,

P的横坐标为-1.

P在直线l上,

P的纵坐标为: .

P的坐标是.

反比例函数的图象经过点P

.

.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某超市销售甲、乙两种糖果,购买3千克甲种糖果和1千克乙种糖果共需44元,购买1千克甲种糖果和2千克乙种糖果共需38元.

(1)求甲、乙两种糖果的价格;

(2)若购买甲、乙两种糖果共20千克,且总价不超过240元,问甲种糖果最少购买多少千克?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)…根据这个规律探究可得,第100个点的坐标为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】因式分解:

1m3nmn

2ax24ax+4a

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,∠AOB是平角,∠AOC=30°,BOD=60°,OMON分别是∠AOCBOD的平分线,∠MON等于________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°

(1)请判断ABCD的位置关系并说明理由;

(2)如图2,当∠E=90°保持不变,移动直角顶点E,使∠MCE=∠ECD,当直角顶点E点移动时,问∠BAE∠MCD是否存在确定的数量关系?并说明理由;

(3)如图3,P为线段AC上一定点,点Q为直线CD上一动点,当点Q在射线CD上运动时(点C除外)∠CPQ+∠CQP∠BAC有何数量关系?猜想结论并说明理由.当点Q在射线CD的反向延长线上运动时(点C除外)∠CPQ+∠CQP∠BAC有何数量关系?直接写出猜想结论,不需说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数yax2+bx+c的顶点坐标是(﹣1,3),与x轴的交点是(2,0),则另一个交点为(  )

A. (0,﹣3) B. (﹣3,0) C. (﹣4,0) D. (﹣2,0)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知一次函数y=x+3的图象与x轴、y轴分别交于A、B两点,抛物线过A、B两点,且与x轴交于另一点C.

(1)求b、c的值;

(2)如图1,点D为AC的中点,点E在线段BD上,且BE=2ED,连接CE并延长交抛物线于点M,求点M的坐标;

(3)将直线AB绕点A按逆时针方向旋转15°后交y轴于点G,连接CG,如图2,P为ACG内以点,连接PA、PC、PG,分别以AP、AG为边,在他们的左侧作等边APR,等边AGQ,连接QR

①求证:PG=RQ;

②求PA+PC+PG的最小值,并求出当PA+PC+PG取得最小值时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】比较大小:﹣3﹣2.(用“>”、“=”或“<”填空)

查看答案和解析>>

同步练习册答案