精英家教网 > 初中数学 > 题目详情
已知四边形的四条边的长分别是m、n、p、q,且满足m2+n2+p2+q2=2mn+2pq.则这个四边形是(  )
分析:对于所给等式m2+n2+p2+q2=2mn+2pq,先移项,故可配成两个完全式,即(m-n)2+(p-q)2=0,进而可得m=n,p=q,四边形中两组邻边相等,故可判定是平行四边形或对角线互相垂直的四边形.
解答:解:m2+n2+p2+q2=2mn+2pq
可化简为(m-n)2+(p-q)2=0
∴m=n,p=q,
∵m,n,p,q分别为四边形的四边
∴m=n=p=q
∴可确定其为平行四边形或对角线互相垂直的四边形.
故选B.
点评:此题主要考查平行四边形的判定问题,正确的对式子进行变形,熟练掌握平行四边形的判定定理是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

(2013•鼓楼区一模)问题提出:
规定:四条边对应相等,四个角对应相等的两个四边形全等.
我们借助学习“三角形全等的判定”获得的经验与方法对“全等四边形的判定”进行探究.
初步思考:
在两个四边形中,我们把“一条边对应相等”或“一个角对应相等”称为一个条件.满足4个条件的两个四边形不一定全等,如边长相等的正方形与菱形就不一定全等.类似地,我们容易知道两个四边形全等至少需要5个条件.
深入探究:
小莉所在学习小组进行了研究,她们认为5个条件可分为以下四种类型:
Ⅰ一条边和四个角对应相等;Ⅱ二条边和三个角对应相等;
Ⅲ三条边和二个角对应相等;Ⅳ四条边和一个角对应相等.
(1)小明认为“Ⅰ一条边和四个角对应相等”的两个四边形不一定全等,请你举例说明.
(2)小红认为“Ⅳ四条边和一个角对应相等”的两个四边形全等,请你结合下图进行证明.
已知:如图,
四边形ABCD和四边形A1B1C1D1中,AB=A1B1,BC=B1C1,CD=C1D1,DA=D1A1,∠B=∠B1
四边形ABCD和四边形A1B1C1D1中,AB=A1B1,BC=B1C1,CD=C1D1,DA=D1A1,∠B=∠B1

求证:
四边形ABCD≌四边形A1B1C1D1
四边形ABCD≌四边形A1B1C1D1

证明:

(3)小刚认为还可以对“Ⅱ二条边和三个角对应相等”进一步分类,他以四边形ABCD和四边形A1B1C1D1为例,分为以下几类:
①AB=A1B1,AD=A1D1,∠A=∠A1,∠B=∠B1,∠C=∠C1
②AB=A1B1,AD=A1D1,∠A=∠A1,∠B=∠B1,∠D=∠D1
③AB=A1B1,AD=A1D1,∠B=∠B1,∠C=∠C1,∠D=∠D1
④AB=A1B1,CD=C1D1,∠A=∠A1,∠B=∠B1,∠C=∠C1
其中能判定四边形ABCD和四边形A1B1C1D1全等的是
①②③
①②③
(填序号),概括可得“全等四边形的判定方法”,这个判定方法是
有一组邻边和三个角对应相等的两个四边形全等
有一组邻边和三个角对应相等的两个四边形全等

(4)小亮经过思考认为也可以对“Ⅲ三条边和二个角对应相等”进一步分类,请你仿照小刚的方法先进行分类,再概括得出一个全等四边形的判定方法.

查看答案和解析>>

科目:初中数学 来源:2012届湖南省临武县楚江中学初中毕业学业考试数学试卷(带解析) 题型:解答题

如图,在平面直角坐标系中,已知抛物线经过点A(0,4),B(1,0),C(5,0),抛物线对称轴轴相交于点M.
(1)求抛物线的解析式和对称轴;                                
(2)设点P为抛物线()上的一点,若以A、O、M、P为顶点的四边形四条边的长度为四个连续的
正整数,请你直接写出点P的坐标;                
(3)连接AC.探索:在直线AC下方的抛物线上是否存在一点N,使△NAC的面积最大?若存在,请你求
出点N的坐标;若不存在,请你说明理由.             

查看答案和解析>>

科目:初中数学 来源:2013年江苏省南京市鼓楼区中考一模数学试卷(解析版) 题型:解答题

【问题提出】

规定:四条边对应相等,四个角对应相等的两个四边形全等.

我们借助学习“三角形全等的判定”获得的经验与方法对“全等四边形的判定”进行探究.

【初步思考】

在两个四边形中,我们把“一条边对应相等”或“一个角对应相等”称为一个条件,满足4个条件的两个四边形不一定全等,如边长相等的正方形与菱形就不一定全等.类似地,我们容易知道两个四边形全等至少需要5个条件.

【深入探究】

小莉所在学习小组进行了研究,她们认为5个条件可分为以下四种类型:

Ⅰ一条边和四个角对应相等;

Ⅱ二条边和三个角对应相等;

Ⅲ三条边和二个角对应相等;

Ⅳ四条边和一个角对应相等.

(1)小明认为“Ⅰ一条边和四个角对应相等”的两个四边形不一定全等,请你举例说明.

(2)小红认为“Ⅳ四条边和一个角对应相等”的两个四边形全等,请你结合下图进行证明.

已知:如图,          

求证:                     

证明:

(3)小刚认为还可以对“Ⅱ二条边和三个角对应相等”进一步分类,他以四边形和四边形为例,分为以下四类:

其中能判定四边形和四边形全等的是     (填序号),概括可得“全等四边形的判定方法”,这个判定方法是         

(4)小亮经过思考认为也可以对“Ⅲ三条边和二个角对应相等”进一步分类,请你仿照小刚的方法先进行分类,再概括得出一个全等四边形的判定方法.

 

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

已知四边形的四条边的长分别是m、n、p、q,且满足m2+n2+p2+q2=2mn+2pq.则这个四边形是


  1. A.
    平行四边形
  2. B.
    对角线互相垂直的四边形
  3. C.
    平行四边形或对角线互相垂直的四边形
  4. D.
    对角线相等的四边形

查看答案和解析>>

同步练习册答案