精英家教网 > 初中数学 > 题目详情

【题目】如图,函数(是常数,)在同一平面直角坐标系的图象可能是(

A. B. C. D.

【答案】B

【解析】

可先根据一次函数的图象判断a的符号再判断二次函数图象与实际是否相符判断正误即可.

A.由一次函数y=axa的图象可得a0此时二次函数y=ax22x+1的图象应该开口向下.故选项错误

B.由一次函数y=axa的图象可得a0此时二次函数y=ax22x+1的图象应该开口向上对称轴x=﹣0.故选项正确

C.由一次函数y=axa的图象可得a0此时二次函数y=ax22x+1的图象应该开口向上对称轴x=﹣0x轴的正半轴相交.故选项错误

D.由一次函数y=axa的图象可得a0此时二次函数y=ax22x+1的图象应该开口向上.故选项错误.

故选B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知,按如下步骤作图:

分别以为圆心,以大于的长为半径在两边作弧,交于两点

作直线,分别交于点

于点,连接

求证:四边形是菱形;

,求四边形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,A(﹣15)、B(﹣10)、C(﹣43).

1)请画出△ABC关于y轴对称的△DEF(其中DEF分别是ABC的对应点).

2)直接写出(1)中F点的坐标为   

3)若直线l经过点(0,﹣2)且与x轴平行,则点C关于直线l的对称点的坐标为   

4)在y轴上存在一点P,使PCPB最大,则点P的坐标为   

5)第一象限有一点M42),在x轴上找一点Q使CQ+MQ最短,画出最短路径,保留作图痕迹.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,每个小正方形的边长为1,点A的坐标为(-32.请按要求分别完成下列各小题:

1)把△ABC向下平移4个单位得到△A1B1C1,画出△A1B1C1,点A1的坐标是___.

2)画出△ABC关于y轴对称的△A2B2C2,则点C2的坐标是

3)△ABC的面积是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某批乒乓球的质量检验结果如下:

抽取的乒乓球数n

200

500

1000

1500

2000

优等品频数m

188

471

946

1426

1898

优等品频率

0.940

0.942

0.946

0.951

0.949

(1)画出这批乒乓球优等品频率的折线统计图;

(2)这批乒乓球优等品的概率的估计值是多少?

(3)从这批乒乓球中选择5个黄球、13个黑球、22个红球,它们除颜色外都相同,将它们放入一个不透明的袋中.

求从袋中摸出一个球是黄球的概率;

现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后使从袋中摸出一个是黄球的概率不小于问至少取出了多少个黑球?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数的图象如图所示.

(1)求这个二次函数的表达式;

(2)将该二次函数图象向上平移   个单位长度后恰好过点(﹣2,0);

(3)观察图象,当﹣2<x<1时,y的取值范围为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:二次函数y=﹣2x2+4x+m+1,与x轴的公共点为A,B.

(1)如果AB重合,求m的值;

(2)横、纵坐标都是整数的点叫做整点:

m=﹣1时,求线段AB上整点的个数;

若设抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)整点的个数为n,当1<n≤8时,结合函数的图象,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在等边△ABCE为边AB上任意一点D在边CB的延长线上EDEC.

(1)当点EAB的中点时(如图1)则有AE DB(填“”“”或“)

(2)猜想AEDB的数量关系并证明你的猜想.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合与实践

问题情境:在数学活动课上,老师出示了这样一个问题:如图1,在矩形ABCD中,AD=2AB,EAB延长线上一点,且BE=AB,连接DE,交BC于点M,以DE为一边在DE的左下方作正方形DEFG,连接AM.试判断线段AMDE的位置关系.

探究展示:勤奋小组发现,AM垂直平分DE,并展示了如下的证明方法:

证明:∵BE=AB,∴AE=2AB.

∵AD=2AB,∴AD=AE.

四边形ABCD是矩形,∴AD∥BC.

.(依据1)

∵BE=AB,∴.∴EM=DM.

AM△ADEDE边上的中线,

∵AD=AE,∴AM⊥DE.(依据2)

∴AM垂直平分DE.

反思交流:

(1)①上述证明过程中的依据1”“依据2”分别是指什么?

试判断图1中的点A是否在线段GF的垂直平分线上,请直接回答,不必证明;

(2)创新小组受到勤奋小组的启发,继续进行探究,如图2,连接CE,以CE为一边在CE的左下方作正方形CEFG,发现点G在线段BC的垂直平分线上,请你给出证明;

探索发现:

(3)如图3,连接CE,以CE为一边在CE的右上方作正方形CEFG,可以发现点C,点B都在线段AE的垂直平分线上,除此之外,请观察矩形ABCD和正方形CEFG的顶点与边,你还能发现哪个顶点在哪条边的垂直平分线上,请写出一个你发现的结论,并加以证明.

查看答案和解析>>

同步练习册答案