
证明:延长ED到G,使DG=DE,连接EF、FG、CG,如图所示:
∵DF=DF,∠EDF=∠FDG=90°,DG=DE
∴△EDF≌△GDF(SAS),
∴EF=FG
又∵D为斜边BC中点
∴BD=DC
又∵∠BDE=∠CDG,DE=DG
∴△BDE≌△CDG(SAS)
∴BE=CG,∠B=∠BCG
∴AB∥CG
∴∠GCA=180°-∠A=180°-90°=90°
在Rt△FCG中,由勾股定理得:
FG
2=CF
2+CG
2=CF
2+BE
2
∴EF
2=FG
2=BE
2+CF
2.
分析:延长ED到G,使DG=DE,连接EF、FG、CG,由于DF=DF,∠EDF=∠FDG=90°,DG=DE,可得出△EDF≌△GDF,所以EF=FG,同理证出BE=CG,所以要证明EF
2=BE
2+CF
2,只需证明FG
2=FC
2+CG
2即可.
点评:本题考查勾股定理的应用,关键在于找出相应的直角三角形,两直角边的平方和等于斜边的平方,证明过程中运用到全等三角形的判定和等价替换的方法.