精英家教网 > 初中数学 > 题目详情

【题目】已知二次函数y=2x2+bx﹣1.
(1)若两点P(﹣3,m)和Q(1,m)在该函数图象上.求b、m的值;
(2)设该函数的顶点为点B,求出点B 的坐标并求三角形BPQ的面积.

【答案】
(1)解:由对称性可知,对称轴为x= =﹣1,

即﹣ =﹣1,

解得b=4,

解析式为y=2x2+4x﹣1,

∵点(1,m)在函数图象上,

∴m=2+4﹣1=5,

∴b=4,m=5


(2)解:当x=﹣1时,y=﹣3,

∴顶点B(﹣1,3),

∵点P(﹣3,5),点Q(1,5)

∴SBPQ= ×4×8=16


【解析】(1)首先求出函数的对称轴方程,进而求出b的值,再求出m的值即可;(2)求出函数的顶点坐标,再根据三角形的面积计算公式求出答案.
【考点精析】关于本题考查的二次函数的性质,需要了解增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AQ=PQPR=PSPRABRPSACS,则三个结论:①AS=ARQPAR③△BPR≌△QPS一定正确的是( )

A. 全部正确 B. 仅①和②正确 C. 仅①正确 D. 仅①和③正确

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某兴趣小组借助无人飞机航拍校园.如图,无人飞机从A处水平飞行至B处需8秒,在地面C处同一方向上分别测得A处的仰角为75°,B处的仰角为30°.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形网格中的每个小正方形边长都是1.请同学们利用网格线进行画图:

(1)在图1中,画一个顶点为格点、面积为5的正方形;

(2)在图2中,已知线段AB、CD,画线段EF,使它与AB、CD组成轴对称图形;(要求画出所有符合题意的线段)

(3)在图3中,找一格点D,满足:CB、CA的距离相等;到点A、C的距离相等.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图ABC中AB=BC=AC=12cm现有两点M、N分别从点A、点B同时出发沿三角形的边运动已知点M的速度为1cm/s点N的速度为2cm/s当点N第一次到达B点时M、N同时停止运动

1点M、N运动几秒后M、N两点重合?

2点M、N运动几秒后可得到等边三角形AMN?

3当点M、N在BC边上运动时能否得到以MN为底边的等腰三角形?如存在请求出此时M、N运动的时间

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,∠A与∠1、2之间的数量关系为____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,∠ACDABC的外角,∠A=40°,BE平分∠ABC,CE平分∠ACD,且BE、CE交于点E.

(1)求∠E的度数.

(2)请猜想∠A与∠E之间的数量关系,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图在平面直角坐标系中

1作出ABC关于轴对称的并写出三个顶点的坐标 (  ),(  ),(  );

2直接写出ABC的面积为

3轴上画点P使PA+PC最小

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图ABCACB=90°,DAB的中点,四边形BCED为平行四边形,DE,AC相交于F.连接DC,AE.

(1)试确定四边形ADCE的形状,并说明理由

(2)AB=16,AC=12,求四边形ADCE的面积.

(3)当△ABC满足什么条件时,四边形ADCE为正方形?请给予证明

查看答案和解析>>

同步练习册答案