【题目】如图,△ABC中,∠ACB=90°,D为AB的中点,四边形BCED为平行四边形,DE,AC相交于F.连接DC,AE.
(1)试确定四边形ADCE的形状,并说明理由.
(2)若AB=16,AC=12,求四边形ADCE的面积.
(3)当△ABC满足什么条件时,四边形ADCE为正方形?请给予证明.
【答案】(1)四边形ADCE是菱形,理由见解析;(2)24;(3)当AC=BC时,四边形ADCE为正方形,证明见解析.
【解析】
(1)由题意容易证明CE平行且等于AD,又知AC⊥DE,所以得到四边形ADCE为菱形;
(2)根据解三角形的知识求出DE的长,然后根据菱形的面积公式求出四边形ADCE的面积;
(3)应添加条件AC=BC,证明CD⊥AB且相等即可.
(1)四边形ADCE是菱形.
理由:∵四边形BCED为平行四边形,
∴CE∥BD,CE=BD,BC∥DE.
∵D为AB的中点,∴AD=BD.
∴CE∥AD,CE=AD.
∴四边形ADCE为平行四边形.
又∵BC∥DF,
∴∠AFD=∠ACB=90°,即AC⊥DE.
∴四边形ADCE为菱形.
(2)在Rt△ABC中,∵AB=16,AC=12,∴BC=4.
而BC=DE,∴DE=4.
∴四边形ADCE的面积=AC·DE=24.
(3)当AC=BC时,四边形ADCE为正方形.
证明:∵AC=BC,D为AB的中点,∴CD⊥AB,即∠ADC=90°.
∴菱形ADCE为正方形.
科目:初中数学 来源: 题型:
【题目】已知二次函数y=2x2+bx﹣1.
(1)若两点P(﹣3,m)和Q(1,m)在该函数图象上.求b、m的值;
(2)设该函数的顶点为点B,求出点B 的坐标并求三角形BPQ的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题引入:
(1)如图①所示,△ABC中,点O是∠ABC和∠ACB的平分线的交点,若∠A=,
则∠BOC= (用表示);不用说明理由,直接填空.
如图②所示,,,若,
则∠BOC= (用表示). 不用说明理由,直接填空.
(2)如图③所示,,,若,
则∠BOC= (用表示),填空并说明理由.
类比研究:
(3)BO,CO分别是△ABC的外角∠DBC,∠ECB的n等分线,
它们交于点O,,,若,
则 (用和n表示).不用说明理由,直接填空.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,BD为正方形ABCD的对角线,BE平分∠DBC,交DC于点E,延长BC到F,使CF=CE,连接DF.若CE=1 cm,则BF=__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,E是BC上的一点,连接AE,过B点作BH⊥AE,垂足为点H,延长BH交CD于点F,连接AF.
(1)求证AE=BF;
(2)若正方形的边长是5,BE=2,求AF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在一面靠墙的空地上用长24m的篱笆,围成中间隔有两道篱笆的长方形花圃,设花圃的宽AB为x(m),面积S(m2).
(1)求S与x之间的函数关系式,并直接写出自变量x的取值范围;
(2)若墙的最大可用长度为8m,求围成花圃的最大面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx﹣5(a≠0)经过点A(4,﹣5),与x轴的负半轴交于点B,与y轴交于点C,且OC=5OB,抛物线的顶点为点D.
(1)求这条抛物线的解析式;
(2)连接AB,BC,CD,DA,求四边形ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=2x2﹣4x﹣6.
(1)写出抛物线的开口方向,对称轴和顶点坐标.
(2)在平面直角坐标系中,画出这个二次函数的图象;
(3)当x取何值时,y随x的增大而减少?
(4)求函数图象与两坐标轴交点所围成的三角形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,阴影部分组成的图案既是关于x轴成轴对称的图形又是关于坐标原点O成中心对称的图形.若点A的坐标是(1,3),则点M和点N的坐标分别是( )
A.M(1,﹣3),N(﹣1,﹣3)
B.M(﹣1,﹣3),N(﹣1,3)
C.M(﹣1,﹣3),N(1,﹣3)
D.M(﹣1,3),N(1,﹣3)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com