【题目】如图,正方形ABCD中,E是BC上的一点,连接AE,过B点作BH⊥AE,垂足为点H,延长BH交CD于点F,连接AF.
(1)求证AE=BF;
(2)若正方形的边长是5,BE=2,求AF的长.
【答案】(1)证明见解析;(2).
【解析】
(1)根据正方形的性质得AB=BC,再根据同角的余角相等得∠BAE=∠EBH,再利用“角角边”证明△ABE≌△BCF,根据全等三角形的对应边相等得AE=BF;
(2)根据全等三角形的对应边相等得BE=CF,再利用勾股定理计算即可得出结论.
(1)∵四边形ABCD是正方形,
∴AB=BC,∠ABE=∠BCF=90°.
∴∠BAE+∠AEB=90°.
∵BH⊥AE,∴∠BHE=90°.
∴∠AEB+∠EBH=90°.
∴∠BAE=∠EBH.
在△ABE和△BCF中,
∴△ABE≌△BCF(ASA).
∴AE=BF.
(2)由(1)得△ABE≌△BCF,
∴BE=CF.
∵正方形的边长是5,BE=2,
∴DF=CD-CF=CD-BE=5-2=3.
在Rt△ADF中,由勾股定理得:AF===.
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=BC=AC=12cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M、N同时停止运动.
(1)点M、N运动几秒后,M、N两点重合?
(2)点M、N运动几秒后,可得到等边三角形△AMN?
(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰三角形?如存在,请求出此时M、N运动的时间.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AO=BO,直线MN经过点O, 且AC⊥MN于C,BD⊥MN于D
(1) 当直线MN绕点O旋转到图①的位置时,求证:CD=AC+BD;
(2) 当直线MN绕点O旋转到图②的位置时,求证:CD=AC-BD;
(3) 当直线MN绕点O旋转到图③的位置时,试问:CD、AC、BD有怎样的等量关系?请写出这个等量关系,并加以证明。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形ABCD中,对角线AC , BD相交于点O , 且AC=6cm,BD=8cm,动点P , Q分别从点B , D同时出发,运动速度均为1cm/s,点P沿B→C→D运动,到点D停止,点Q沿D→O→B运动,到点O停止1s后继续运动,到点B停止,连接AP , AQ , PQ . 设△APQ的面积为y(cm2)(这里规定:线段是面积0的几何图形),点P的运动时间为x(s).
(1)填空:AB=cm,AB与CD之间的距离为cm;
(2)当4≤x≤10时,求y与x之间的函数解析式;
(3)直接写出在整个运动过程中,使PQ与菱形ABCD一边平行的所有x的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠ACB=90°,D为AB的中点,四边形BCED为平行四边形,DE,AC相交于F.连接DC,AE.
(1)试确定四边形ADCE的形状,并说明理由.
(2)若AB=16,AC=12,求四边形ADCE的面积.
(3)当△ABC满足什么条件时,四边形ADCE为正方形?请给予证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用适当的方法解下列方程:
(1)2x2﹣8x=0.
(2)x2﹣3x﹣4=0.
求出抛物线的开口方向、对称轴、顶点坐标.
(3)y= x2﹣x+3(公式法).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在四边形ABDE中,C是BD边的中点.
(1)如图(1),若AC平分∠BAE,∠ACE=90°,则线段AE、AB、DE的长度满足的数量关系为 ;(直接写出答案)
(2)如图(2),AC平分∠BAE,EC平分∠AED,若∠ACE=120°,则线段AB、BD、DE、AE的长度满足怎样的数量关系?写出结论并证明;
(3)如图(3),BD=8,AB=2,DE=8,若ACE=135°,则线段AE长度的最大值是 (直接写出答案).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com