精英家教网 > 初中数学 > 题目详情
(1998•宁波)如图,在直角坐标系中,OA=OC,AB=4,tan∠BCO=,二次函数y=ax2+bx+c图象经过A、B、C三点.
(1)求A,B,C三点的坐标;
(2)求二次函数的解析式;
(3)求过点A、B和抛物线顶点D的圆的半径.

【答案】分析:(1)可用OB表示出OA、OC的长,进而在Rt△OBC中,根据∠BCO的正切值求出OB的长,即可得到OA、OC的长,也就求得了A、B、C的坐标;
(2)用待定系数法即可求得二次函数的解析式;
(3)根据抛物线的解析式可求得D点的坐标;过D作DE⊥x轴于E,根据抛物线与圆的对称性可知DE必过圆心,连接MB(设圆心为M),在Rt△MEB中,可用⊙O的半径表示出ME、MB的长,进而由勾股定理求出⊙O的半径.
解答:解:(1)设OB=x,则OA=OC=4+x;
Rt△OBC中,tan∠BCO==,即:
OC=5OB,4+x=5x,
解得x=1;
∴OB=1,OA=OC=5;
∴A(-5,0),B(-1,0),C(0,5);

(2)设抛物线的解析式为y=a(x+1)(x+5),依题意有:
a(0+1)(0+5)=5,a=1;
∴y=(x+1)(x+5)=x2+6x+5;

(3)由(2)知:y=x2+6x+5=(x+3)2-4,则D(-3,-4)
过D作DE⊥x轴于E,则DE必过圆心M,连接BM,
设⊙M的半径为R;
Rt△BME中,BM=R,ME=DE-DM=4-R,BE=AB=2;
由勾股定理得:BM2=ME2+BE2
即R2=(4-R)2+4,
解得R=2.5;
故过点A、B和抛物线顶点D的圆的半径为2.5.
点评:此题主要考查了二次函数解析式的确定、解直角三角形、垂径定理及勾股定理的应用等知识,难度适中.
练习册系列答案
相关习题

科目:初中数学 来源:1998年全国中考数学试题汇编《二次函数》(01)(解析版) 题型:解答题

(1998•宁波)如图,已知平行四边形DEFG与正方形ABCD有一个公共顶点D,G在CB或其延长线上,A在EF所在直线上,又二次函数y=(m-1)x2-(m-2)x-1(m>0)与x轴的两个交点P、Q的横坐标分别为x1,x2,且x1>0,x2>0,正方形ABCD的边长a等于点P,Q间的距离.
(1)求m的取值范围;
(2)求a和四边形DEFG的面积S;
(3)若DEFG的一组邻边长分别等于x1,x2,并设,求sin∠E和k.
((2),(3)的结果都用含m的代数式表示)

查看答案和解析>>

科目:初中数学 来源:1999年浙江省宁波市中考数学试卷(解析版) 题型:解答题

(1998•宁波)如图,在直角坐标系中,OA=OC,AB=4,tan∠BCO=,二次函数y=ax2+bx+c图象经过A、B、C三点.
(1)求A,B,C三点的坐标;
(2)求二次函数的解析式;
(3)求过点A、B和抛物线顶点D的圆的半径.

查看答案和解析>>

科目:初中数学 来源:1998年浙江省宁波市中考数学试卷 题型:解答题

(1998•宁波)如图,已知平行四边形DEFG与正方形ABCD有一个公共顶点D,G在CB或其延长线上,A在EF所在直线上,又二次函数y=(m-1)x2-(m-2)x-1(m>0)与x轴的两个交点P、Q的横坐标分别为x1,x2,且x1>0,x2>0,正方形ABCD的边长a等于点P,Q间的距离.
(1)求m的取值范围;
(2)求a和四边形DEFG的面积S;
(3)若DEFG的一组邻边长分别等于x1,x2,并设,求sin∠E和k.
((2),(3)的结果都用含m的代数式表示)

查看答案和解析>>

科目:初中数学 来源:1998年全国中考数学试题汇编《一元二次方程》(02)(解析版) 题型:解答题

(1998•宁波)如图,四边形ABCD内接于以AC为直径的⊙O,AC,BD交于点E,DB平分∠ADC,AF∥BD交CD延长线于点F,且CD,DF的长是关于x的方程x2-3x+p=0的两根.
(1)求证:DE=p;
(2)求DB的长.

查看答案和解析>>

同步练习册答案