精英家教网 > 初中数学 > 题目详情

【题目】已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.
(1)如图1,连接AF、CE.求证四边形AFCE为菱形,并求AF的长;
(2)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中, ①已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.
②若点P、Q的运动路程分别为a、b(单位:cm,ab≠0),已知A、C、P、Q四点为顶点的四边形是平行四边形,求a与b满足的数量关系式.

【答案】
(1)解:①∵四边形ABCD是矩形,

∴AD∥BC,

∴∠CAD=∠ACB,∠AEF=∠CFE,

∵EF垂直平分AC,垂足为O,

∴OA=OC,

∴△AOE≌△COF,

∴OE=OF,

∴四边形AFCE为平行四边形,

又∵EF⊥AC,

∴四边形AFCE为菱形,

②设菱形的边长AF=CF=xcm,则BF=(8﹣x)cm,

在Rt△ABF中,AB=4cm,

由勾股定理得42+(8﹣x)2=x2

解得x=5,

∴AF=5cm


(2)解:①显然当P点在AF上时,Q点在CD上,此时A、C、P、Q四点不可能构成平行四边形;

同理P点在AB上时,Q点在DE或CE上或P在BF,Q在CD时不构成平行四边形,也不能构成平行四边形.

因此只有当P点在BF上、Q点在ED上时,才能构成平行四边形,

∴以A、C、P、Q四点为顶点的四边形是平行四边形时,PC=QA,

∵点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,

∴PC=5t,QA=CD+AD﹣4t=12﹣4t,即QA=12﹣4t,

∴5t=12﹣4t,

解得

∴以A、C、P、Q四点为顶点的四边形是平行四边形时, 秒.

②由题意得,四边形APCQ是平行四边形时,点P、Q在互相平行的对应边上.

分三种情况:

i)如图1,当P点在AF上、Q点在CE上时,AP=CQ,即a=12﹣b,得a+b=12;

ii)如图2,当P点在BF上、Q点在DE上时,AQ=CP,即12﹣b=a,得a+b=12;

iii)如图3,当P点在AB上、Q点在CD上时,AP=CQ,即12﹣a=b,得a+b=12.

综上所述,a与b满足的数量关系式是a+b=12(ab≠0)


【解析】(1)先证明四边形AFCE为平行四边形,再根据对角线互相垂直平分的平行四边形是菱形作出判定;根据勾股定理即可求得AF的长;(2)①分情况讨论可知,当P点在BF上、Q点在ED上时,才能构成平行四边形,根据平行四边形的性质列出方程求解即可;②分三种情况讨论可知a与b满足的数量关系式.
【考点精析】本题主要考查了线段垂直平分线的性质和勾股定理的概念的相关知识点,需要掌握垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线;线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等;直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】我市某中学为备战省运会,在校运动队的学生中进行了全能选手的选拔,并将参加选拔学生的综合成绩分成四组,绘成了如下尚不完整的统计图表.

组别

成绩

组中值

频数

第一组

90≤x<100

95

4

第二组

80≤x<90

85

m

第三组

70≤x<80

75

n

第四组

60≤x<70

65

21

根据图表信息,回答下列问题:
(1)参加活动选拔的学生共有人;表中m= , n=
(2)若将各组的组中值视为该组的平均值,请你估算参加选拔学生的平均成绩;
(3)将第一组中的4名学生记为A、B、C、D,由于这4名学生的体育综合水平相差不大,现决定随机挑选其中两名学生代表学校参赛,试通过画树形图或列表的方法求恰好选中A和B的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,4,5,x.甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复试验.实验数据如下表:

摸球总次数

10

20

30

60

90

120

180

240

330

450

“和为8”出现的频数

2

10

13

24

30

37

58

82

110

150

“和为8”出现的频率

0.20

0.50

0.43

0.40

0.33

0.31

0.32

0.34

0.33

0.33

解答下列问题:
(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率将稳定在它的概率附近.估计出现“和为8”的概率是
(2)当x=7时,请用列表法或树状图法计算“和为8”的概率;并判断x=7是否可能.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了绿化校园,我校决定修建一块长方形草坪,长米,宽米,并在草坪上修建如图所示的十字路,设小路的宽为米.

用含的式子分别表示出草坪的面积、小路的面积;

写出中多项式的项、次数,并说明是几次几项式?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC中,∠C=90°AD平分∠CABDE⊥ABE,若AC=6BC=8CD=3

1)求DE的长;

2)求△ADB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠B=∠C=36°,AB的垂直平分线交BC于点D,交AB于点H,AC的垂直平分线交BC于点E,交AC于点G,连接AD,AE,则下列结论错误的是(
A. =
B.AD,AE将∠BAC三等分
C.△ABE≌△ACD
D.SADH=SCEG

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,点OAC边上的一个动点,过点O作直线MNBC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F.

(1)求证:EO=FO;

(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与路程的关系示意图.

根据图中提供的信息回答下列问题:

(1)小明家到学校的路程是多少米?

(2)在整个上学的途中哪个时间段小明骑车速度最快,最快的速度是多少米/分?

(3)小明在书店停留了多少分钟?

(4)本次上学途中,小明一共行驶了多少米?一共用了多少分钟?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=AC,DBC中点,四边形ABDE是平行四边形,AC、DE相交于点O.

(1)求证:四边形ADCE是矩形.

(2)若∠AOE=60°,AE=4,求矩形ADCE对角线的长.

查看答案和解析>>

同步练习册答案