精英家教网 > 初中数学 > 题目详情

已知:4+数学公式和4-数学公式的小数部分分别是a和b,则ab-3a+4b-7等于


  1. A.
    -3
  2. B.
    -4
  3. C.
    -5
  4. D.
    -6
C
分析:先求出的范围,根据不等式的性质得出4+和4-的范围,进而得到a、b的值,再代入ab-3a+4b-7求出即可.
解答:∵3<<4,
∴-3>->-4,4+3<4+<4+4,
∴4-3>4->4-4,
即7<4+<8,0<4-<1,
∴a=4+-7=-3,b=4--0=4-
∴ab-3a+4b-7
=(-3)×(4-)-3×(-3)+4×(4-)-7
=4-11-12+3-3+9+16-4-7
=-5.
故选C.
点评:本题考查了无理数的大小和实数的运算,关键是确定a和b的值,题目比较好,难度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读探索:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”(完成下列空格)
(1)当已知矩形A的边长分别为6和1时,小亮同学是这样研究的:
设所求矩形的两边分别是x和y,由题意得方程组:
x+y=
7
2
xy=3
,消去y化简得:2x2-7x+6=0,
∵△=49-48>0,∴x1=
 
,x2=
 

∴满足要求的矩形B存在.
(2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B.
(3)如果矩形A的边长为m和n,请你研究满足什么条件时,矩形B存在?

查看答案和解析>>

科目:初中数学 来源: 题型:

探索一个问题:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半”(完成下列空格)
(1)当已知矩形A的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是x和y,精英家教网由题意得方程组:
x+y=
7
2
xy=3
,消去y化简得:2x2-7x+6=0,
∵△=49-48>0,∴x1=
 
,x2=
 
.∴满足要求的矩形B存在.
(2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B.
(3)如果矩形A的边长为m和n,请你研究满足什么条件时,矩形B存在?
(4)如图,在同一平面直角坐标系中画出了一次函数和反比例函数的部分图象,其中x和y分别表示矩形B的两边长,请你结合刚才的研究,回答下列问题:
①这个图象所研究的矩形A的两边长为
 
 

②满足条件的矩形B的两边长为
 
 

查看答案和解析>>

科目:初中数学 来源: 题型:

学以致用
问题:任意给定一个矩形,是否存在另一个矩形,它的周长和面积分别是已知矩形周长和面积的一半?
讨论:小明说:一定存在.
小华说:一定不存在.
小红说:不一定存在.
探究:老师和大家一起举例说明:(1)如果已知矩形的长和宽和面积分别为7和1,那么它的周长和面积分别16和7,则所求的矩形周长和面积应为8和3.5;
问题转化为:周长为8,面积为3.5的矩形是否存在?
我们假设所求矩形的长为x,固定它的周长为8,则它的宽为
 

可列出方程
 

解得:
 

所以:
 

(2)①如果矩形的长和宽分别为5和1,这时情况如何?
②综上所得,你认为
 
的说法正确.

查看答案和解析>>

科目:初中数学 来源: 题型:

“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的三分之一?”(完成下列空格)
(1)当已知矩形A的边长分别3和1时,小明是这样研究的:设所求矩形的两边分别是x和y,由题意得方程组:
x+y=
4
3
xy=1

消去y化简得:3x2-4x+3=0
∵b2-4ac=16-36=-20<0
∴故方程
 
.∴满足要求的矩形B
 
(填不存在或存在).
若已知矩形A的边长分别为10和1,请仿照小明的方法研究是否存在满足要求的矩形B.若存在,求矩形B的长和宽,若不存在,说明理由.
(2)如果矩形A的边长为a和b,请你研究满足什么条件时,矩形B存在?并求此时矩形B的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

在一次探究性活动中,教师提出了问题:已知矩形的长和宽分别是2和1,是否存在另一个矩形,它的周长和面积分别是已知矩形周长和面积的2倍?设所求矩形的长和宽分别为x,y
(1)小明从“图形”的角度来研究:所求矩形的周长应满足关系式①
y=-x+6
y=-x+6
,面积应满足关系式②
y=
4
x
y=
4
x
,在同一坐标系中画出①②的图象,观察所画的图象,你能得出什么结论?
(2)小丽从“代数”的角度来研究:由题意可列方程组
y=-x+6
y=
4
x
y=-x+6
y=
4
x
,解这个方程组,你能得出什么结论?

查看答案和解析>>

同步练习册答案