精英家教网 > 初中数学 > 题目详情
如图所示三角形,不是下列立体图形的左视图
[     ]
A.
B.
C.
D.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

37、如图①所示,已知直线m∥n,A,B为直线n上的两点,C,D为直线m上的两点.
(1)写出图中面积相等的各对三角形
△ABC和△ABD,△AOC和△BOD,△CDA和△CDB

(2)如果A,B,C为三个定点,点D在m上移动,那么无论D点移动到任何位置,总有
△ABD
与△ABC的面积相等,理由是
平行线间的距离处处相等

解决以下问题:如图②所示,五边形ABCDE是张大爷十年前承包的一块土地的示意图,经过多年开垦荒地,现已变成如图③所示的形状,但承包土地与开垦荒地的分界小路(即图中的折线CDE)还保留着.张大爷想过E点修一条直路,使直路左边的土地面积与承包时的一样多,右边的土地面积与开垦荒地面积一样多.请你用相关的几何知识,按张大爷的要求设计出修路方案.(不计分界小路与直路的占地面积)
(3)写出设计方案,并在图③中画出相应的图形;
(4)说明方案设计的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、已知:如图,AB是⊙O的直径,P是AB上的一点(与A、B不重合),QP⊥AB,垂足为P,直线QA交⊙O于C点,过C点作⊙O的切线交直线QP于点D.则△CDQ是等腰三角形.
对上述命题证明如下:
证明:连接OC
∵OA=OC
∴∠A=∠1
∵CD切O于C点
∴∠OCD=90°
∴∠1+∠2=90°
∴∠A+∠2=90°
在RtQPA中,∠QPA=90°
∴∠A+∠Q=90°
∴∠2=∠Q
∴DQ=DC
即CDQ是等腰三角形.
问题:对上述命题,当点P在BA的延长线上时,其他条件不变,如图所示,结论“△CDQ是等腰三角形”还成立吗?若成立,请给予证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,Rt△ABC是一张放在平面直角坐标系中的纸片,点C与原点O重合,点A在x轴的正半轴上,点B在y轴的正半轴上,已知OA=3,OB=4.将纸片的直角部分翻折,使点C落在精英家教网AB边上,记为D点,AE为折痕,E在y轴上.
(1)在如图所示的直角坐标系中,求E点的坐标及AE的长.
(2)线段AD上有一动点P(不与A、D重合)自A点沿AD方向以每秒1个单位长度向D点作匀速运动,设运动时间为t秒(0<t<3),过P点作PM∥DE交AE于M点,过点M作MN∥AD交DE于N点,求四边形PMND的面积S与时间t之间的函数关系式,当t取何值时,S有最大值?最大值是多少?
(3)当t(0<t<3)为何值时,A、D、M三点构成等腰三角形?并求出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

问题背景:
在△ABC中,AB、BC、AC三边的长分别为
5
10
13
,求这个三角形的面积.
小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图①所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.我们把上述求△ABC面积的方法叫做构图法.
(1)若△ABC三边的长分别为
5
a,2
2
a,
17
a
(a>0),请利用图②的正方形网格(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积.
思维拓展:
(2)若△ABC三边的长分别为
m2+16n2
9m2+4n2
,2
m2+n2
(m>0,n>0,且m≠n),试运用构图法求出这三角形的面积.
探索创新:
(3)已知a、b都是正数,a+b=3,求当a、b为何值时
a2+4
+
b2+25
有最小值,并求这个最小值.
(4)已知a,b,c,d都是正数,且a2+b2=c2,c
a2-d2
=a2,求证:ab=cd.

查看答案和解析>>

同步练习册答案