分析 连接AC,在直角三角形ABC中可求得AC的长,由AC、AD、DC的长度关系可得△DAC为一直角三角形,DA为斜边;由此看,四边形ABCD由Rt△ABC和Rt△DAC构成,则容易求出面积,面积乘以单价即可得出结果.
解答 解:连接AC,![]()
在Rt△ABC中,AC2=AB2+BC2=32+42=52,
∴AC=5.
在△DAC中,CD2=122,AD2=132,
而122+52=132,
即AC2+CD2=AD2,
∴∠DCA=90°,
S四边形ABCD=S△BAC+S△DAC=$\frac{1}{2}$•BC•AB+$\frac{1}{2}$DC•AC,
=$\frac{1}{2}$×4×3+$\frac{1}{2}$×12×5=36(m2);
36×150=5400(元),.
答:总共需要投入5400元.
点评 本题考查了勾股定理及其逆定理的相关知识,通过勾股定理由边与边的关系也可证明直角三角形,这样解题较为简单,求出四边形ABCD的面积是解题关键.
科目:初中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com