分析 (1)由AC⊥AB于点A,BD⊥AB于点B,得到∠A=∠B=90°,推出Rt△ACE≌Rt△BED;
(2)CE与DE位置关系是垂直,根据全等三角形的性质得到∠AEC=∠D,由∠D+∠BED=90°,等量代换得到∠AEC+∠BED=90°,即可得到结论.
解答 (1)证明:∵AC⊥AB于点A,BD⊥AB于点B,
∴∠A=∠B=90°,
在△RtACE和△RtBED中,
$\left\{\begin{array}{l}{AC=BE}\\{CE=DE}\end{array}\right.$,
∴Rt△ACE≌Rt△BED;
(2)∵Rt△ACE≌Rt△BED,
∴∠AEC=∠D,
∵∠D+∠BED=90°,
∴∠AEC+∠BED=90°,
∴∠CED=180°-90°=90°,
∴CE⊥DE.
点评 本题考查了全等三角形的判定和性质,垂直的定义,平角的定义,熟练掌握全等三角形的判定定理是解题的关键.
科目:初中数学 来源: 题型:选择题
| A. | 南偏东20° | B. | 西偏南70° | C. | 南偏东70° | D. | 西偏南20° |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | a2=1,b2=2,c2=3 | B. | b=c,∠A=45° | ||
| C. | ∠A=$\frac{3}{2}$∠B=3∠C | D. | a+b=2.5,a-b=1.6,c=2 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 60° | B. | 50° | C. | 40° | D. | 25° |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com