5£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬Rt¡÷ABCµÄÈý¸ö¶¥µãΪA£¨1£¬4£©£¬£¨1£¬0£©£¬£¨3£¬0£©£¬ÒÔAΪ¶¥µãµÄÅ×ÎïÏß¹ýµãC£¬ÇÒÓëxÖáÁíÒ»½»µãΪD£®
£¨1£©ÇóÅ×ÎïÏß½âÎöʽ£»
£¨2£©¶¯µãP´ÓA³ö·¢£¬ÑØÏß¶ÎACÏòÖÕµãCÔ˶¯£¬¹ýµãP×÷PG¡ÎAB½»Å×ÎïÏßÓÚµãG£¬Çó¡÷ACGÃæ»ýµÄ×î´óÖµ£¬²¢Çó³ö´ËʱPµã×ø±ê£»
£¨3£©ÔÚ£¨2£©Ìõ¼þÏ£¬µ±¡÷ACGÃæ»ý×î´óʱ£¬Å×ÎïÏßÉÏʽ·ñ´æÔÚµãQ£¬Ê¹µÃ¡ÏGAP+¡ÏQDO=90¡ã£¿Èô´æÔÚ£¬ÇóQµã×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÒÑÖª¶¨µã×ø±êÒÔ¼°Å×ÎïÏßÉϵĵ㣨3£¬0£©£¬ÀûÓôý¶¨ÏµÊý·¨¼´¿ÉÇóµÃº¯Êý½âÎöʽ£»
£¨2£©Ê×ÏÈÀûÓôý¶¨ÏµÊý·¨ÇóµÃACµÄ½âÎöʽ£¬ÉèPµÄºá×ø±êÊÇm£¬ÀûÓÃm¿ÉÒÔ±íʾ³ö¡÷ACGµÄÃæ»ý£¬ÀûÓú¯ÊýµÄÐÔÖÊÇóµÃPµã×ø±ê£»
£¨3£©Ê×ÏÈÇóµÃGµÄ×ø±ê£¬È»ºó×÷GH¡ÍACÓÚµãH£¬ÇóµÃAHºÍGHµÄ³¤¶È£¬È»ºóÇóµÃODµÄ³¤£¬¸ù¾ÝÏàËÆÈý½ÇÐεÄÐÔÖʼ´¿É½â´ð£®

½â´ð ½â£º£¨1£©ÉèÅ×ÎïÏߵĽâÎöʽÊÇy=a£¨x-1£©2+4£¬
°Ñ£¨3£¬0£©´úÈëµÃ£º4a+4=0£¬
½âµÃ£ºa=-1£¬
ÔòÅ×ÎïÏߵĽâÎöʽÊÇy=-£¨x-1£©2+4£¬¼´y=-x2+2x+3£»
£¨2£©ÉèACµÄ½âÎöʽÊÇy=kx+b£¬¸ù¾ÝÌâÒâµÃ£º$\left\{\begin{array}{l}{k+b=4}\\{3k+b=0}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{k=-2}\\{b=6}\end{array}\right.$£¬
ÔòACµÄ½âÎöʽÊÇy=-2x+6£®
ÉèPµÄ×ø±êÊÇ£¨m£¬-2m+6£©£¬
ÔòS=$\frac{1}{2}$¡Á2¡Á£¨-m2+2m+3+2m-6£©=-m2+4m-3£¬
Ôòµ±m=2ʱ£¬SÓÐ×î´óÖµ£®
Ôòµ±x=2ʱ£¬y=-4+6=2£¬ÔòPµÄ×ø±êÊÇ£¨2£¬2£©£»
£¨3£©°Ñx=2´úÈëy=-x2+2x+3µÃy=-4+4+3=3£¬
ÔòGµÄ×ø±êÊÇ£¨2£¬3£©£®
Éè¾­¹ýGÇÒ´¹Ö±ÓÚACµÄÖ±ÏߵĽâÎöʽÊÇy=$\frac{1}{2}$x+c£¬°Ñ£¨2£¬3£©´úÈëµÃ1+c=3£¬
½âµÃ£ºc=2£¬
Ôò¾­¹ýGÇÒ´¹Ö±ÓÚACµÄÖ±ÏßHGµÄ½âÎöʽÊÇy=$\frac{1}{2}$x+2£®
¸ù¾ÝÌâÒâµÃ£º$\left\{\begin{array}{l}{y=\frac{1}{2}x+2}\\{y=-2x+6}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{x=\frac{8}{5}}\\{y=\frac{14}{5}}\end{array}\right.$£¬
ÔòHµÄ×ø±êÊÇ£¨$\frac{8}{5}$£¬$\frac{14}{5}$£©£®
ÔòQH=$\sqrt{£¨2-\frac{8}{5}£©^{2}+£¨3-\frac{14}{5}£©^{2}}$=$\frac{\sqrt{5}}{5}$£¬AH=$\sqrt{£¨\frac{8}{5}-1£©^{2}+£¨4-\frac{14}{5}£©^{2}}$=$\frac{3\sqrt{5}}{5}$£®
ÔòAH£ºHQ=3£º1£®
C£¨3£¬0£©¹ØÓÚx=1µÄ¶Ô³ÆµãÊÇ£¨-1£¬0£©£¬ÔòÓëxÖáÁíÒ»½»µãDµÄ×ø±êÊÇ£¨-1£¬£©£¬ÔòOD=1£¬
Å×ÎïÏßy=-x2+2x+3ÖУ¬µ±x=0ʱ£¬y=3£¬¼´Å×ÎïÏßÓëyÖáµÄ½»µãÊÇ£¨0£¬3£©£®OE=3£¬
ÔòOE£ºOD=3£º1£¬
Ôòµ±Q£¨0£¬3£©Ê±£¬¡÷ODE¡×¡÷HQA£¬´Ëʱ¡ÏGAP+¡ÏQDO=90¡ã£»
E¹ØÓÚxÖáµÄ¶Ô³ÆµãE¡äÊÇ£¨0£¬-3£©£®
ÉèÖ±ÏßDE¡äµÄ½âÎöʽÊÇy=mx+n£¬
Ôò$\left\{\begin{array}{l}{-m+n=0}\\{n=-3}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{m=-3}\\{n=-3}\end{array}\right.$£¬
ÔòÖ±ÏßDE¡äµÄ½âÎöʽÊÇy=-3x-3£®
¸ù¾ÝÌâÒâµÃ£º$\left\{\begin{array}{l}{y=-{x}^{2}+2x+3}\\{y=-3x-3}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{x=6}\\{y=-2}\end{array}\right.$£®
ÔòQµÄ×ø±êÊÇ£¨6£¬-2£©£®
×ÜÖ®£¬QµÄ×ø±êÊÇ£¨0£¬3£©»ò£¨6£¬-2£©£®

µãÆÀ ±¾Ì⿼²éÁË´ý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽÒÔ¼°ÏàËÆÈý½ÇÐεÄÅж¨ÓëÐÔÖÊ£¬×¢Òâµ½£ºµ±QÊÇÅ×ÎïÏßÓëyÖáµÄ½»µãʱÂú×ã¡ÏGAP+¡ÏQDO=90¡ãÊǹؼü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®¹«Ë¾Í¶×Ê750ÍòÔª£¬³É¹¦ÑÐÖÆ³öÒ»ÖÖÊг¡ÐèÇóÁ¿½Ï´óµÄ²úÆ·£¬²¢ÔÙͶÈë×ʽð1750ÍòÔª½øÐÐÏà¹ØÉú²úÉ豸µÄ¸Ä½ø£®ÒÑÖªÉú²ú¹ý³ÌÖУ¬Ã¿¼þ²úÆ·µÄ³É±¾Îª60Ôª£®ÔÚÏúÊÛ¹ý³ÌÖз¢ÏÖ£¬µ±ÏúÊÛµ¥¼Û¶¨Îª120Ԫʱ£¬ÄêÏúÊÛÁ¿Îª24Íò¼þ£»ÏúÊÛµ¥¼ÛÿÔö¼Ó10Ôª£¬ÄêÏúÊÛÁ¿½«¼õÉÙ1Íò¼þ£®ÉèÏúÊÛµ¥¼ÛΪx£¨Ôª£©£¨x£¾120£©£¬ÄêÏúÊÛÁ¿Îªy£¨Íò¼þ£©£¬µÚÒ»ÄêÄê»ñÀû£¨Äê»ñÀû=ÄêÏúÊÛ¶î-Éú²ú³É±¾£©Îªz£¨ÍòÔª£©£®
£¨1£©Çó³öyÓëxÖ®¼ä£¬zÓëxÖ®¼äµÄº¯Êý¹ØÏµÊ½£»
£¨2£©¸Ã¹«Ë¾ÄÜ·ñÔÚµÚÒ»ÄêÊÕ»ØÍ¶×Ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®½«Ò»¸±Èý½Ç°åÖеÄÁ½¿éÖ±½ÇÈý½Ç³ßµÄÖ±½Ç¶¥µãO°´Èçͼ·½Ê½µþ·ÅÔÚÒ»Æð£®

£¨1£©Èçͼ£¨1£©Èô¡ÏBOD=35¡ã£¬Ôò¡ÏAOC=145¡ã£»Èô¡ÏAOC=135¡ã£¬Ôò¡ÏBOD=45¡ã£»
£¨2£©Èçͼ£¨2£©Èô¡ÏAOC=140¡ã£¬Ôò¡ÏBOD=40¡ã£»
£¨3£©²ÂÏë¡ÏAOCÓë¡ÏBODµÄ´óС¹ØÏµ£¬²¢½áºÏͼ£¨1£©ËµÃ÷ÀíÓÉ£®
£¨4£©Èý½Ç³ßAOB²»¶¯£¬½«Èý½Ç³ßCODµÄOD±ßÓëOA±ßÖØºÏ£¬È»ºóÈÆµãO°´Ë³Ê±Õë»òÄæÊ±Õë·½ÏòÈÎÒâת¶¯Ò»¸ö½Ç¶È£¬µ±¡ÏAOD£¨0¡ã£¼¡ÏAOD£¼90¡ã£©µÈÓÚ¶àÉÙ¶Èʱ£¬ÕâÁ½¿éÈý½Ç³ß¸÷ÓÐÒ»Ìõ±ß»¥Ïà´¹Ö±£¬Ö±½Óд³ö¡ÏAOD½Ç¶ÈËùÓпÉÄܵÄÖµ£¬²»ÓÃ˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÒÔÏÂÁи÷×éÊý¾ÝΪ±ß³¤£¬Äܹ¹³ÉÖ±½ÇÈý½ÇÐεÄÊÇ£¨¡¡¡¡£©
A£®2£¬3£¬5B£®4£¬5£¬6C£®11£¬12£¬15D£®8£¬15£¬17

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®»¯¼ò£º2£¨a+1£©2+£¨a+1£©£¨1-2a£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®Èçͼ£¬ÔÚRt¡÷ABCÖУ¬¡ÏBAC=90¡ã£¬AC=2AB£¬µãDÊÇACµÄÖе㣬½«Ò»¿éÈñ½ÇΪ45¡ãµÄÈý½Ç°åÈçͼ·ÅÖã¬Ê¹Èý½Ç°åб±ßµÄÁ½¸ö¶Ëµã·Ö±ðÓëA£¬DÖØºÏ£¬EÊÇÖ±½Ç¶¥µã£¬Á¬½ÓEC£¬BE£®ÇóÖ¤£ºBE=CE£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®Èçͼ£¬ÒÑÖª¡÷ABCºÍ¡÷DCE¾ùÊǵȱßÈý½ÇÐΣ¬µãB£¬C£¬EÔÚͬÌõÖ±ÏßÉÏ£¬AEÓëBD½»ÓÚµãO£¬AEÓëCDÏཻÓÚµãG£¬ACÓëBD½»ÓÚµãF£¬Á¬½á0C£¬FG£¬ÔòÏÂÁнáÂÛ£º¢ÙAE=BD£»¢ÚAG=BF£»¢ÛFG¡ÎBE£»¢Ü¡ÏBOA=60¡ã£¬ÆäÖÐÕýÈ·µÄÓУ¨¡¡¡¡£©
A£®1¸öB£®2¸öC£®3¸öD£®4¸ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®¼ÆË㣺£¨-2£©2003•£¨$\frac{1}{2}$£©2002µÈÓÚ-2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÔÚ-6£¬2£¬-3ÖУ¬×î´óµÄÊý±È×îСµÄÊý´ó£¨¡¡¡¡£©
A£®9B£®8C£®5D£®2

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸