·ÖÎö £¨1£©ÒÑÖª¶¨µã×ø±êÒÔ¼°Å×ÎïÏßÉϵĵ㣨3£¬0£©£¬ÀûÓôý¶¨ÏµÊý·¨¼´¿ÉÇóµÃº¯Êý½âÎöʽ£»
£¨2£©Ê×ÏÈÀûÓôý¶¨ÏµÊý·¨ÇóµÃACµÄ½âÎöʽ£¬ÉèPµÄºá×ø±êÊÇm£¬ÀûÓÃm¿ÉÒÔ±íʾ³ö¡÷ACGµÄÃæ»ý£¬ÀûÓú¯ÊýµÄÐÔÖÊÇóµÃPµã×ø±ê£»
£¨3£©Ê×ÏÈÇóµÃGµÄ×ø±ê£¬È»ºó×÷GH¡ÍACÓÚµãH£¬ÇóµÃAHºÍGHµÄ³¤¶È£¬È»ºóÇóµÃODµÄ³¤£¬¸ù¾ÝÏàËÆÈý½ÇÐεÄÐÔÖʼ´¿É½â´ð£®
½â´ð ½â£º£¨1£©ÉèÅ×ÎïÏߵĽâÎöʽÊÇy=a£¨x-1£©2+4£¬![]()
°Ñ£¨3£¬0£©´úÈëµÃ£º4a+4=0£¬
½âµÃ£ºa=-1£¬
ÔòÅ×ÎïÏߵĽâÎöʽÊÇy=-£¨x-1£©2+4£¬¼´y=-x2+2x+3£»
£¨2£©ÉèACµÄ½âÎöʽÊÇy=kx+b£¬¸ù¾ÝÌâÒâµÃ£º$\left\{\begin{array}{l}{k+b=4}\\{3k+b=0}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{k=-2}\\{b=6}\end{array}\right.$£¬
ÔòACµÄ½âÎöʽÊÇy=-2x+6£®
ÉèPµÄ×ø±êÊÇ£¨m£¬-2m+6£©£¬
ÔòS=$\frac{1}{2}$¡Á2¡Á£¨-m2+2m+3+2m-6£©=-m2+4m-3£¬
Ôòµ±m=2ʱ£¬SÓÐ×î´óÖµ£®
Ôòµ±x=2ʱ£¬y=-4+6=2£¬ÔòPµÄ×ø±êÊÇ£¨2£¬2£©£»
£¨3£©°Ñx=2´úÈëy=-x2+2x+3µÃy=-4+4+3=3£¬
ÔòGµÄ×ø±êÊÇ£¨2£¬3£©£®
Éè¾¹ýGÇÒ´¹Ö±ÓÚACµÄÖ±ÏߵĽâÎöʽÊÇy=$\frac{1}{2}$x+c£¬°Ñ£¨2£¬3£©´úÈëµÃ1+c=3£¬
½âµÃ£ºc=2£¬
Ôò¾¹ýGÇÒ´¹Ö±ÓÚACµÄÖ±ÏßHGµÄ½âÎöʽÊÇy=$\frac{1}{2}$x+2£®
¸ù¾ÝÌâÒâµÃ£º$\left\{\begin{array}{l}{y=\frac{1}{2}x+2}\\{y=-2x+6}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{x=\frac{8}{5}}\\{y=\frac{14}{5}}\end{array}\right.$£¬
ÔòHµÄ×ø±êÊÇ£¨$\frac{8}{5}$£¬$\frac{14}{5}$£©£®
ÔòQH=$\sqrt{£¨2-\frac{8}{5}£©^{2}+£¨3-\frac{14}{5}£©^{2}}$=$\frac{\sqrt{5}}{5}$£¬AH=$\sqrt{£¨\frac{8}{5}-1£©^{2}+£¨4-\frac{14}{5}£©^{2}}$=$\frac{3\sqrt{5}}{5}$£®
ÔòAH£ºHQ=3£º1£®
C£¨3£¬0£©¹ØÓÚx=1µÄ¶Ô³ÆµãÊÇ£¨-1£¬0£©£¬ÔòÓëxÖáÁíÒ»½»µãDµÄ×ø±êÊÇ£¨-1£¬£©£¬ÔòOD=1£¬![]()
Å×ÎïÏßy=-x2+2x+3ÖУ¬µ±x=0ʱ£¬y=3£¬¼´Å×ÎïÏßÓëyÖáµÄ½»µãÊÇ£¨0£¬3£©£®OE=3£¬
ÔòOE£ºOD=3£º1£¬
Ôòµ±Q£¨0£¬3£©Ê±£¬¡÷ODE¡×¡÷HQA£¬´Ëʱ¡ÏGAP+¡ÏQDO=90¡ã£»
E¹ØÓÚxÖáµÄ¶Ô³ÆµãE¡äÊÇ£¨0£¬-3£©£®
ÉèÖ±ÏßDE¡äµÄ½âÎöʽÊÇy=mx+n£¬
Ôò$\left\{\begin{array}{l}{-m+n=0}\\{n=-3}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{m=-3}\\{n=-3}\end{array}\right.$£¬
ÔòÖ±ÏßDE¡äµÄ½âÎöʽÊÇy=-3x-3£®
¸ù¾ÝÌâÒâµÃ£º$\left\{\begin{array}{l}{y=-{x}^{2}+2x+3}\\{y=-3x-3}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{x=6}\\{y=-2}\end{array}\right.$£®
ÔòQµÄ×ø±êÊÇ£¨6£¬-2£©£®
×ÜÖ®£¬QµÄ×ø±êÊÇ£¨0£¬3£©»ò£¨6£¬-2£©£®
µãÆÀ ±¾Ì⿼²éÁË´ý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽÒÔ¼°ÏàËÆÈý½ÇÐεÄÅж¨ÓëÐÔÖÊ£¬×¢Òâµ½£ºµ±QÊÇÅ×ÎïÏßÓëyÖáµÄ½»µãʱÂú×ã¡ÏGAP+¡ÏQDO=90¡ãÊǹؼü£®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 2£¬3£¬5 | B£® | 4£¬5£¬6 | C£® | 11£¬12£¬15 | D£® | 8£¬15£¬17 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 1¸ö | B£® | 2¸ö | C£® | 3¸ö | D£® | 4¸ö |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 9 | B£® | 8 | C£® | 5 | D£® | 2 |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com