精英家教网 > 初中数学 > 题目详情

如图,在梯形ABCD中,AD∥BC,∠ABC=90°,DG⊥BC于G,BH⊥DC于H,CH=DH,点E在AB上,点F在BC上,并且EF∥DC.
(1)若AD=3,CG=2,求CD;
(2)若CF=AD+BF,求证:EF=数学公式CD.

(1)解:连BD,如图,
∵在梯形ABCD中,AD∥BC,∠ABC=90°,DG⊥BC,
∴四边形ABGD为矩形,
∴AD=BG=3,AB=DG,
又∵BH⊥DC,CH=DH,
∴△BDC为等腰三角形,
∴BD=BG+GC=3+2=5,
在Rt△ABD中,AB===4,
∴DG=4,
在Rt△DGC中,
∴DC===2

(2)证明:∵CF=AD+BF,
∴CF=BG+BF,
∴FG+GC=BF+FG+BF,即GC=2BF,
∵EF∥DC,
∴∠BFE=∠GCD,
∴Rt△BEF∽Rt△GDC,
∴EF:DC=BF:GC=1:2,
∴EF=DC.
分析:(1)由AD∥BC,∠ABC=90°,DG⊥BC得到四边形ABGD为矩形,利用矩形的性质有AD=BG=3,AB=DG,而BH⊥DC,CH=DH,根据等腰三角形的判定得到△BDC为等腰三角形,即有BD=BG+GC=3+2=5,先在Rt△ABD中求出AB,然后在Rt△DGC中求出DC;
(2)由CF=AD+BF,AD=BG,经过线段代换易得GC=2BF,再由EF∥DC得到∠BFE=∠GCD,根据三角形相似的判定易得Rt△BEF∽Rt△GDC,利用相似比即可得到结论.
点评:本题考查了直角梯形的性质:有一组对边平行,另一组对边不平行,且有一个直角.也考查了矩形的性质、勾股定理、等腰三角形的判定以及相似三角形的判定与性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

11、如图,在梯形ABCD中,AB∥CD,对角线AC、BD交于点O,则S△AOD
=
S△BOC.(填“>”、“=”或“<”)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=CD=10.
求:梯形ABCD的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,AB⊥AD,对角线BD⊥DC.
(1)求证:△ABD∽△DCB;
(2)若BD=7,AD=5,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、如图,在梯形ABCD中,AD∥BC,并且AB=8,AD=3,CD=6,并且∠B+∠C=90°,则梯形面积S梯形ABCD=
38.4

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD为直径的半圆O切AB于点E,这个梯形的面积为21cm2,周长为20cm,那么半圆O的半径为(  )
A、3cmB、7cmC、3cm或7cmD、2cm

查看答案和解析>>

同步练习册答案