精英家教网 > 初中数学 > 题目详情

如图,在等腰△ABC中,AB=AC,分别过点B、C作两腰的平行线,经过点A的直线与两平行线分别交于点D、E,连接DC、BE,DC与AB边相交于点M,BE与AC边相交于点N.求证:AM=NC.

证明:延长DB、EC交于点P,
∵BD∥AC,AB∥EC,
∴四边形ABPC为平行四边形,
∵AB=AC,
∴?ABPC是菱形,
∴AB=BP=PC=CA,
∵BD∥AC,
∴△EAC∽△EDP,

同理:

∵四边形ABPC是平行四边形,
∴∠BAC=∠P,
∵AC∥DP,
∴∠ACD=∠CDP,
∴△AMC∽△PCD,

∵AC=CP,

∵AC=BP,
∴AM=CN.
分析:首先延长DB、EC交于点P,由BD∥AC,AB∥EC,可得四边形ABPC为平行四边形,又由AB=AC,即可证得:?ABPC是菱形,可得AB=BP=PC=CA,又可证得:△EAC∽△EDP与△AMC∽△PCD,根据相似三角形的对应边成比例,则可证得:CN=AM.
点评:此题考查了平行四边形,菱形的判定与性质以及相似三角形的判定与性质.此题综合性很强,注意掌握辅助线的作法,注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在等腰△ABC中,AB=AC,BE⊥AC,垂足为E,则∠1与∠A的关系式为(  )
A、∠1=∠A
B、∠1=
1
2
∠A
C、∠1=2∠A
D、无法确定

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在等腰△ABC中,AB=AC,AB的垂直平分线DE交AB于点D,交另一腰AC于点E,若∠EBC=15°,则∠A=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

24、如图,在等腰△ABC中,AB=AC,∠ABC=α,在四边形BDEC中,DB=DE,∠BDE=2α,M为CE的中点,连接AM,DM.
(1)在图中画出△DEM关于点M成中心对称的图形;
(2)求证AM⊥DM;
(3)当α=
45°
,AM=DM.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•丽水)如图,在等腰△ABC中,AB=AC,∠BAC=50°.∠BAC的平分线与AB的中垂线交于点O,点C沿EF折叠后与点O重合,则∠CEF的度数是
50°
50°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等腰△ABC中,AB=AC=10cm,直线DE垂直平分AB,分别交AB、AC于D、E两点.若BC=8cm,则△BCE的周长是
18
18
cm.

查看答案和解析>>

同步练习册答案