精英家教网 > 初中数学 > 题目详情
(2011•德阳)如图,已知抛物线经过原点O,与x轴交于另一点A,它的对称轴x=2与x轴交于点C,直线y=2x+1经过抛物线上一点B(m,-3),且与y轴、直线x=2分别交于点D,E.
(1)求抛物线对应的函数解析式并用配方法把这个解析式化成y=a(x-h)2+k的形式;
(2)求证:CD⊥BE;
(3)在对称轴x=2上是否存在点P,使△PBE是直角三角形?如果存在,请求出点P的坐标,并求出△PAB的面积;如果不存在,请说明理由.
分析:(1)由对称轴设抛物线的解析式为y=a(x-2)2+k,由直线y=2x+1经过点B(m,-3),可以求出m的值,求出B点的坐标,从而可以求出抛物线的解析式.
(2)利用直线BE的解析式和对称轴求出E的坐标,求出CE的值,过点B作BF垂直于x轴于F,作BH垂直于直线x=2于H,交y轴于点Q,利用勾股定理可以求得△BCE是等腰三角形,且BD=DE,由等腰三角形的性质就得出结论.
(3)①当∠BPE=90°时,点P与(2)中的点H重合,可以求出P点的坐标,△PAB的面积;当∠EBP=90°时,设点P(2,y),利用△BHP∽△EHB可以求出点P的坐标,从而求出△PAB的面积.
解答:(1)解:∵已知抛物线的对称轴为x=2,
∴设抛物线的解析式为y=a(x-2)2+k,
又∵直线y=2x+1经过点B(m,-3),
∴-3=2m+1,解得,m=-2,
∴点B(-2,-3),
又∵二次函数y=a(x-2)2+k的图象经过0(0,0),B(-2,-3),
0=a(0-2)2+k
-3=a(-2-2)2+k

解得
a=-
1
4
k=1

∴抛物线的解析式为y=-
1
4
(x-2)2+1


(2)证明:由题意解方程组
y=2x+1
x=2

x=2
y=5

∴点E的坐标为(2,5),∴CE=5.
过点B作BF垂直于x轴于F,作BH垂直于直线x=2于H,交y轴于点Q,
∵点B(-2,-3),D(0,1),
∴BF=3,BH=4,CH=BF=3,OD=1,EH=8,DQ=4.
在Rt△BHE,Rt△BQ0,Rt△BHC中,
由勾股定理得BE=
42+82
=4
5
,BD=
42+22
=2
5
,BC=
42+32
=5

∴BD=
1
2
BE,
又∵EC=5,
∴BC=CE,
∴CD⊥BE.

(3)解:结论:存在点P,使△PBE是直角三角形.
①当∠BPE=90°时,点P与(2)中的点H重合,
∴此时点P的坐标为(2,-3);
延长BH与过点A(4,0)且与x轴垂直的直线交于M,
S△PAB=S△HAB=S△ABM-S△AHM=
1
2
×6×3-
1
2
×2×3=6

②当∠EBP=90°时,设点P(2,y),
∵E(2,5),H(2,-3),B(-2,-3)),
∴BH=4,EH=8,PH=-3-y.
在Rt△PBE中,BH⊥PE,
可证得△BHP∽△EHB,
HP
BH
=
BH
EH
,即
-3-y
4
=
4
8

解得y=-5,
此时点P的坐标为(2,-5).
过点P与x轴平行的直线与FB的延长线交于点N,
S△PAB=S梯形APNF-S△FAB-S△BPN=
1
2
×(4+6)×5-
1
2
×6×3-
1
2
×4×2=12

综合①,②知点P的坐标为(2,-3),△PAB的面积为6;或点P的坐标为(2,-5),△PAB的面积为12.
点评:本题是一道二次函数的综合试题,考查了待定系数法求二次函数的解析式,三角形的面积,勾股定理的运用,相似三角形的判定与性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2011•德阳)如图,在平面直角坐标系中,已知点A(a,0),B(0,b),如果将线段AB绕点B顺时针旋转90°至CB,那么点C的坐标是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•德阳)如图,有一块△ABC材料,BC=10,高AD=6,把它加工成一个矩形零件,使矩形的一边GH在BC上,其余两个顶点E,F分别在AB,AC上,那么矩形EFHG的周长l的取值范围是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•德阳)如图,在△ABC中,AD⊥BC于D,如果BD=9,DC=5,cosB=
3
5
,E为AC的中点,那么sin∠EDC的值为
12
13
12
13

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•德阳)如图,在直角三角形ABC中,∠C=90°,AC=12.BC=16,点0为△ABC的内心,点M为斜边AB的中点,则OM的长为
2
5
2
5

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•德阳)如图,已知一次函数y=-x+1与反比例函数y=
kx
的图象相交于A,B两点,且点A的坐标为(2,t).
(1)求反比例函数的解析式和点B的坐标;
(2)直线y=-x+1与x轴相交于点C,点C关于y轴的对称点为C',求△BCC'的外接圆的周长.

查看答案和解析>>

同步练习册答案