精英家教网 > 初中数学 > 题目详情

如图,已知AB=AC,D是AB上一点,DE⊥BC于E,ED的延长线交CA的延长线于F,试说明△ADF是等腰三角形的理由.

证明:∵AB=AC,
∴∠B=∠C(等边对等角).
∵DE⊥BC于E,
∴∠FEB=∠FEC=90°.
∴∠B+∠EDB=∠C+∠EFC=90°.
∴∠EFC=∠EDB(等角的余角相等).
∵∠EDB=∠ADF(对顶角相等),
∴∠EFC=∠ADF.
∴△ADF是等腰三角形.
分析:根据等腰三角形的性质得到∠B=∠C,再根据等角的余角相等得到∠EFB=∠EDC,从而推出∠EDB=∠ADF,根据等角对等边判定△ADF是等腰三角形.
点评:此题考查了学生对等腰三角形的性质及判定的理解及运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知AB⊥AC,AD⊥AE,AB=AC,AD=AE,则∠BFD的度数是(  )
A、60°B、90°C、45°D、120°

查看答案和解析>>

科目:初中数学 来源: 题型:

10、如图,已知AB=AC,D是BC的中点,E是AD上的一点,图中全等三角形有几对(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

26、如图,已知AB=AC,AD=AE.求证BD=CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,已知AB=AC,AD=AE,BD=EC,则图中有
2
对全等三角形,它们是
△ABD≌△AEC
△ABE≌△ADC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB=AC,BC=CD=AD,求∠B的值.

查看答案和解析>>

同步练习册答案