精英家教网 > 初中数学 > 题目详情

如图,过点B作DB⊥AB于点B,使BD=数学公式,在AD上截取DE=BD,在AB上截取AC=AE,则数学公式=________.


分析:设DB=x,利用BD=可得AB=2x,根据AD上截取DE=BD,在AB上截取AC=AE,分别表示出BC和AB后求比即可.
解答:DB=x,
∵BD=
∴AB=2x,
∴由勾股定理得:AD=x,
∵DE=BD,AC=AE,
∴DE=DB=x,AC=AE=AD-DE=(-1)x,
BC=AB-AC=2x-(-1)x=(3-)x,
==
故答案为:
点评:本题考查了含30°角的直角三角形及勾股定理的知识,解题的关键是利用勾股定理求得直角三角形的斜边的长.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•盐城)如图①,若二次函数y=
3
6
x2+bx+c的图象与x轴交于A(-2,0),B(3,0)两点,点A关于正比例函数y=
3
x的图象的对称点为C.
(1)求b、c的值;
(2)证明:点C在所求的二次函数的图象上;
(3)如图②,过点B作DB⊥x轴交正比例函数y=
3
x的图象于点D,连结AC,交正比例函数y=
3
x的图象于点E,连结AD、CD.如果动点P从点A沿线段AD方向以每秒2个单位的速度向点D运动,同时动点Q从点D沿线段DC方向以每秒1个单位的速度向点C运动.当其中一个点到达终点时,另一个点随之停止运动,连结PQ、QE、PE.设运动时间为t秒,是否存在某一时刻,使PE平分∠APQ,同时QE平分∠PQC?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,过点B作DB⊥AB于点B,使BD=
1
2
AB
,在AD上截取DE=BD,在AB上截取AC=AE,则
BC
AB
=
3-
5
2
3-
5
2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图①,若二次函数y=数学公式x2+bx+c的图象与x轴交于A(-2,0),B(3,0)两点,点A关于正比例函数y=数学公式x的图象的对称点为C.
(1)求b、c的值;
(2)证明:点C在所求的二次函数的图象上;
(3)如图②,过点B作DB⊥x轴交正比例函数y=数学公式x的图象于点D,连结AC,交正比例函数y=数学公式x的图象于点E,连结AD、CD.如果动点P从点A沿线段AD方向以每秒2个单位的速度向点D运动,同时动点Q从点D沿线段DC方向以每秒1个单位的速度向点C运动.当其中一个点到达终点时,另一个点随之停止运动,连结PQ、QE、PE.设运动时间为t秒,是否存在某一时刻,使PE平分∠APQ,同时QE平分∠PQC?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2013年江苏省盐城市中考数学试卷(解析版) 题型:解答题

如图①,若二次函数y=x2+bx+c的图象与x轴交于A(-2,0),B(3,0)两点,点A关于正比例函数y=x的图象的对称点为C.
(1)求b、c的值;
(2)证明:点C在所求的二次函数的图象上;
(3)如图②,过点B作DB⊥x轴交正比例函数y=x的图象于点D,连结AC,交正比例函数y=x的图象于点E,连结AD、CD.如果动点P从点A沿线段AD方向以每秒2个单位的速度向点D运动,同时动点Q从点D沿线段DC方向以每秒1个单位的速度向点C运动.当其中一个点到达终点时,另一个点随之停止运动,连结PQ、QE、PE.设运动时间为t秒,是否存在某一时刻,使PE平分∠APQ,同时QE平分∠PQC?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2013年初中毕业升学考试(江苏盐城卷)数学(解析版) 题型:解答题

如图①,若二次函数的图象与x轴交于点A(-2,0),B(3,0)两点,点A关于正比例函数的图象的对称点为C。

(1)求b、c的值;

(2)证明:点C 在所求的二次函数的图象上;

(3)如图②,过点B作DB⊥x轴交正比例函数的图象于点D,连结AC,交正比例函数的图象于点E,连结AD、CD。如果动点P从点A沿线段AD方向以每秒2个单位的速度向点D运动,同时动点Q从点D沿线段DC方向以每秒1个单位的速度向点C运动,当其中一个到达终点时,另一个随之停止运动,连结PQ、QE、PE,设运动时间为t秒,是否存在某一时刻,使PE平分∠APQ,同时QE平分∠PQC,若存在,求出t的值;若不存在,请说明理由。

 

 

查看答案和解析>>

同步练习册答案