精英家教网 > 初中数学 > 题目详情

如图,AC是⊙O的直径,AD与⊙O相切于点A,四边形ABCD是平行四边形,AB交⊙O于点E.
(1)判断直线BC与⊙O的位置关系,并说明理由;
(2)若⊙O的半径为4,AB=10,求线段BE的长.

解:(1)直线BC与⊙O相切.
理由是:∵四边形ABCD为平行四边形,
∴AD∥BC,
∴∠BCA=∠DAC,
∵AD与⊙O相切于点A,AC是⊙O的直径,
∴∠BCA=∠DAC=90°,
又∵AC是⊙O的直径,∴BC与⊙O相切.

(2)方法①:连接CE,
∵AC是⊙O的直径,
∴∠AEC=90°,
∵⊙O 的半径为4,
∴AC=8,
又∵∠BCA=∠CEA=90°,∠BAC=∠CAE,
∴△BAC∽△CAE,
=
=
∴AE=
∴BE=AB-AE=
方法②:由勾股定理得:BC=6,
∵BC是圆的切线,BEA是圆的割线,
由切割线定理得:BC2=BE•BA,
代入求出BE=
答:BE的长是
分析:(1)根据平行四边形性质求出∠BCA=∠DAC=90°,根据圆的切线的判定定理求出即可;
(2)根据勾股定理求出BC,根据切割线定理求出即可.
点评:本题主要考查对切割线定理,勾股定理,切线的性质和判定,相似三角形的性质和判定等知识点的理解和掌握,能综合运用性质进行推理是解此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,△ABC是一个边长为2的等边三角形,D、E都在直线BC上,并且∠DAE=120°
(1)设BD=x,CE=y,求y与x直间的函数关系式;
(2)在上题中一共有几对相似三角形,分别指出来(不必证明)
(3)改变原题的条件为AB=AC=2,∠BAC=β,∠DAE=α,α、β之间要满足什么样的关系,能使(1)中y与x的关系式仍然成立?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网在“汶川”地震后人们积极开展自救.如图,这是小明家搭建的简易帐篷,小明准备从帐篷竖直的支撑竿AB的顶部A向地面拉一根绳子AC固定帐篷.若地面固定点C到帐篷支撑竿底部B的距离是4米,∠ACB=30°,求支撑竿AB的长和绳子AC的长.(结果保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:

某市的跨江斜拉大桥建成通车,如图,BC是水平桥面,AD是竖直桥墩,按工程设计的要求,斜拉的钢线AB、AC应相等,请你用学过的知识来检验AB、AC的长度是相等的,写出你的检验方法步骤,并简要说明理由.(检验工具为刻度尺、测角仪;检验时,人只能站在桥面上)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图(1),在水平地面点A处有一网球发射器向空中发射网球,网球飞行路线是一条抛物线,在地面上落点为B.有人在直线AB上点C(靠点B一侧)竖直向上摆放无盖的圆柱形桶,试图让网球落入桶内.已知AB=4米,AC=3米,网球飞行最大高度OM=5米,圆柱形桶的直径为0.5米,高为0.3米(网球的体积和圆柱形桶的厚度忽略不计).
(1)在如图(2)建立的坐标系下,求网球飞行路线的抛物线解析式;
(2)若竖直摆放5个圆柱形桶时,则网球能落入桶内吗?说明理由;
(3)若要使网球能落入桶内,求竖直摆放的圆柱形桶的个数.

查看答案和解析>>

科目:初中数学 来源:2008年江苏省南通市如东县马塘中学中考数学模拟试卷(解析版) 题型:解答题

在“汶川”地震后人们积极开展自救.如图,这是小明家搭建的简易帐篷,小明准备从帐篷竖直的支撑竿AB的顶部A向地面拉一根绳子AC固定帐篷.若地面固定点C到帐篷支撑竿底部B的距离是4米,∠ACB=30°,求支撑竿AB的长和绳子AC的长.(结果保留根号).

查看答案和解析>>

同步练习册答案