精英家教网 > 初中数学 > 题目详情

如图13所示,正方形ABCD中,E、F分别是边AD、CD上的点,DE=CF,AF与BE相交于O,DG⊥AF,垂足为G。

[1]求证:AF⊥BE;

[2]试探究线段AO、BO、GO的长度之间的数量关系;

[3]若GO:CF=4:5,试确定E点的位置。

 


 [1]证明:∵ABCD为正方形,且DE=CF,

∴AE=DF,AB=AD,∠BAE=∠ADF=90°,

∴△ABE≌△DAF,

∴∠ABE=∠DAF,又∵∠ABE+∠AEB=90°

∴∠DAF+∠AEB=90°,

∴∠AOE=90°,即AF⊥BE;

[2]解:BO=AO+OG.

理由:由[1]的结论可知,

∠ABE=∠DAF,∠AOB=∠DGA=90°,AB=AD,

则△ABO≌△DAG,

所以,BO=AG=AO+OG;

[3]解:过E点作EH⊥DG,垂足为H[如答图2所示],

由矩形的性质,得EH=OG,

∵DE=CF,GO:CF=4:5,∴EH:ED=4:5,

∵AF⊥BE,AF⊥DG,∴OE∥DG,

∴∠AEB=∠EDH,△ABE∽△HED,

∴AB:BE=EH:ED=4:5,

在Rt△ABE中,AE:AB=3:4,

故AE:AD=3:4,

即AE= [3AD]/4。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

问题背景:在△ABC中,AB、BC、AC三边的长分别为
5
10
13
,求这个三角形的面积小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶精英家教网点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.
(1)请你将△ABC的面积直接填写在横线上.
 

(2)画△DEF,DE、EF、DF三边的长分别为
2
8
10

①判断三角形的形状,说明理由.
②求这个三角形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,AB、BC、AC三边的长分别为
5
10
13
,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.
(1)△ABC的面积为:
 

(2)若△DEF三边的长分别为
5
2
2
17
,请在图1的正方形网格中画出相应的△DEF,并利用构图法求出它的面积;
(3)如图2,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为13,10,17,且△PQR、△BCR、△DEQ、△AFP的面积相等,求六边形花坛ABCDEF的面积.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,其中从第三个数起,每一个数都等于它前面两上数的和.现以这组数中的各个数作为正方形的长度构造如图1正方形:再分别依次从左到右取2个、3个、4个、5个正方形拼成如下矩形并记为①、②、③、④.相应矩形的周长如图2所示:若按此规律继续作矩形,则序号为⑧的矩形周长是
178
178

查看答案和解析>>

科目:初中数学 来源: 题型:

现场学习题
问题背景:在△ABC中,AB、BC、AC三边的长分别为
2
13
17
,求这个三角形的面积.
小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.
(1)请你将△ABC的面积直接填写在横线上.
2.5
2.5

思维拓展:
(2)我们把上述求△ABC面积的方法叫做构图法.若△ABC三边的长分别为
2
a
2
5
a
26
a
(a>0),请利用图2的正方形网格(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积是:
3a2
3a2

查看答案和解析>>

同步练习册答案