【题目】如图,抛物线y=﹣x2﹣2x+3 的图象与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.
(1)求A,B,C三点的坐标.
(2)点M为线段AB上一点(点M不与点A,B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N.若点P在点Q左边,当矩形PMNQ的周长最大时,求△AEM的面积.
(3)在(2)的条件下,当矩形PMNQ的周长最大时,连结DQ.过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=2DQ,求点F的坐标.
【答案】(1)A(﹣3,0),B(1,0),C(0,3);(2).(3)F(﹣4,﹣5)或(1,0).
【解析】
试题分析:(1)通过解析式即可得出C点坐标,令y=0,解方程得出方程的解,即可求得A、B的坐标.
(2)设M点横坐标为m,则PM=﹣m2﹣2m+3,MN=(﹣m﹣1)×2=﹣2m﹣2,矩形PMNQ的周长=﹣2m2﹣8m+2,将﹣2m2﹣8m+2配方,根据二次函数的性质,即可得出m的值,然后求得直线AC的解析式,把x=m代入可以求得三角形的边长,从而求得三角形的面积,
(3)先确定出点D坐标,进而得出FG由FG=4建立方程求解即可.
试题解析:(1)由抛物线y=﹣x2﹣2x+3可知点C(0,3),
令y=0,则0=﹣x2﹣2x+3,
解得x=﹣3或x=1,
∴点A(﹣3,0),B(1,0).
(2)由抛物线y=﹣x2﹣2x+3=﹣(x+1)2+4可知,对称轴为直线x=﹣1,
设点M的横坐标为m,则PM=﹣m2﹣2m+3,MN=(﹣m﹣1)×2=﹣2m﹣2,
∴矩形PMNQ的周长=2(PM+MN)=2(﹣m2﹣2m+3﹣2m﹣2)=﹣2m2﹣8m+2=﹣2(m+2)2+10,
∴当m=﹣2时矩形的周长最大.
∵点A(﹣3,0),C(0,3),
∴直线AC的函数表达式为y=x+3,
当x=﹣2时,y=﹣2+3=1,则点E(﹣2,1),
∴EM=1,AM=1,
∴S=AMEM=.
(3)∵点M的横坐标为﹣2,抛物线的对称轴为x=﹣1,
∴点N应与原点重合,点Q与点C重合,
∴DQ=DC,
把x=﹣1代入y=﹣x2﹣2x+3,得y=4,
∴点D(﹣1,4).
∴DQ=DC
∵FG=2DQ,
∴FG=4,
设点F(n,﹣n2﹣2n+3),则点G(n,n+3),
∵点G在点F的上方,
∴(n+3)﹣(﹣n2﹣2n+3)=4,解得n=﹣4或n=1.
∴点F(﹣4,﹣5)或(1,0).
科目:初中数学 来源: 题型:
【题目】甲、乙两艘客轮同时离开港口,航行的速度都是40m/min,甲客轮用15min到达点A,乙客轮用20min到达点B,若A,B两点的直线距离为1000m,甲客轮沿着北偏东30°的方向航行,则乙客轮的航行方向可能是( )
A. 北偏西30° B. 南偏西30° C. 南偏东60° D. 南偏西60°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知:四边形ABCD是平行四边形,点E在边BA的延长线上,CE交AD于点F,∠ECA=∠D
(1)求证:△EAC∽△ECB;
(2)若DF=AF,求AC:BC的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】该怎样配杂拌糖
节日快到了,各家各户都在准备年货,糖果更是每家必备的年货.小丽的爸爸刚承包了一个副食店.他想:一定要抓住商机,薄利多销.为此他动了一番脑筋.如果把各种糖果混合起来配成杂拌糖,这样顾客就可以花较少的钱吃到各种口味的糖了.于是他把店里现有的6种售价为11元/千克的奶糖和6种售价为6元 /千克的水果糖混合在一起,配成100千克售价为8元/千克的杂拌糖,那么该取奶糖、水果糖各多少千克呢?小丽的爸爸想了半天,也没有解决这个问题.晚上回家后,只好请小丽帮忙.没想到女儿不到两分钟就找到了答案.
父亲按女儿的方法配好杂拌糖,开始卖了起来.顾客看到杂拌糖品种齐全,价格公道,都愿意来买.小店的生意还真红火.爸爸更是高兴得合不拢嘴,心里直夸聪明的女儿.你知道小丽告诉爸爸是怎样配杂拌糖的吗?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列各组线段,能组成三角形的是( )
A. 2cm,3cm,5cm B. 5cm,6cm,10cm
C. 1cm,1cm,3cm D. 3cm,4cm,8cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,转盘A的三个扇形面积相等,分别标有数字1,2,3,转盘B的四个扇形面积相等,分别有数字1,2,3,4.转动A、B转盘各一次,当转盘停止转动时,将指针所落扇形中的两个数字相乘(当指针落在四个扇形的交线上时,重新转动转盘).
(1)用树状图或列表法列出所有可能出现的结果;
(2)求两个数字的积为奇数的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,D是BC延长线上的一点,线段BD的垂直平分线EG交AB于点E,交BD于点G.
(1)当∠B=30°时,AE和EF有什么关系?请说明理由;
(2)当点D在BC延长线上(CD<BC)运动时,点E是否在线段AF的垂直平分线上?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com