分析 (1)设购买A种树苗x棵,则购买B种树苗(1000-x)棵,根据总费用=(购买A种树苗的费用+种植A种树苗的费用)+(购买B种树苗的费用+种植B种树苗的费用),即可求出y(元)与x(棵)之间的函数关系式;
(2)根据绿化村道的总费用不超过31000元,列出关于x的一元一次不等式,求出x的取值范围,即可求解.
(3)根据总费用=种植A种树苗的总费用+种植B种树苗的总费用,即可求出y(元)与x(棵)之间的函数关系式y=(m-10)x+35000,根据m的取值和一次函数的性质进行判断即可.
解答 解:(1)y=(20+5)x+(30+5)(1000-x)=-10x+35000;
(2)-10x+35000≤31000,
解得:x≥400,
所以,最多可购买B种树苗600棵;
(3)y=(25+m)x+35(1000-x)
=(m-10)x+35000,
因为:10≤m≤15,所以当m=10时,无论怎样购买,绿化总费用都是35000元;
当10<m≤15,则m-10>0,所以y随x的减小而减小,所以取最小值400,y有最小值,所以购买方案是:A种树苗400棵,B种树苗600棵.
但无论怎样购买总费用均超过第(2)中的31000元,所以,按要求不能实现购买.
点评 此题考查了一次函数的应用,一元一次方程的应用,一元一次不等式的应用.此题难度适中,解题的关键是理解题意,根据题意求得函数解析式、列出方程与不等式,明确不等关系的语句“不超过”的含义.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 14 | B. | 15 | C. | 16 | D. | 17 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com